This work is within an ongoing study, which aims to propose a new methodology for fatigue life analysis of steel pipelines with plain dents under cyclic internal pressure. This methodology follows the current high cycle fatigue theory and employs stress concentration factors induced by plain dents to modify standard S-N curves. A previously developed and validated finite element model is extended to generate stress concentration factors for longitudinal and transverse dents, in addition to spherical dents. Several finite element analyses are carried out in a parametric study to evaluate stress concentration factors induced by the three dent types studied: spherical, longitudinal and transverse dents. Analytical expressions are developed to estimate stress concentration factors for these three dent types as function of pipe and dent geometric parameters. Small-scale fatigue tests are conducted to evaluate the finite life behavior of dented steel pipes under cyclic internal pressure. The methodology is validated in view of the fatigue tests results. Including expressions to estimate stress concentration factors for three different dent types (spherical, longitudinal and transverse dents), the proposed methodology can then be used for fatigue life analysis of dented steel pipelines under cyclic internal pressure.

This content is only available via PDF.
You do not currently have access to this content.