Edison Welding Institute (EWI) and Enterprise Products Operating LP (Enterprise) worked together to develop an in-service welding program. The objective of this project was to relax flow restrictions on current in-service welding procedures to allow for welding onto liquid pipelines with flow rates outside of current flow limits. Enterprise’s current products include liquid propane, liquid ethane, and propane and ethane mixes in addition to other refined products. The current Enterprise in-service welding procedures restrict welding onto liquid pipelines with a flow rate between 1.3 and 4.0 ft/s (0.4 and 1.2 m/s). The minimum flow rate of 1.3 ft/s (0.4 m/s) was used because it was Enterprise’s minimal operating flow rate. The maximum flow rate of 4 ft/s (1.2 m/s) was grandfathered into the procedures. When welding onto an in-service pipeline to repair a damaged section of pipe or to install a branch connection (i.e., hot-tapping) there are two main concerns (burnthrough and hydrogen cracking) and both concerns needed to be evaluated for both flow conditions. The results from the project allow welding onto no-flow liquid pipelines with wall thicknesses between 0.25 and 0.5 in. (6.4 to 12.7 mm). Even though welding onto a no-flow thin-walled liquid pipeline [i.e., less than 0.25 in. (6.4 mm)] would not increase cracking susceptibility, the risk of burnthrough and eutectic iron formation would make the procedure unacceptable. The results of this project also indicated that acceptable welds can be made onto a high flow liquid pipeline [up to 12 ft/s (3.7 m/s)]. It was recommended, however, that Enterprise only use the temper bead welding procedures for such applications. Proper use of the temper bead welding procedures (i.e., proper heat input, weld toe spacing and stringent low hydrogen welding practice) has been shown to produce acceptable, crack-free welds. It is important to note that none of the welds showed signs of cracking, but the hardness levels of the heat input control procedures all exceeded the critical hardness level for their intended carbon equivalent materials. Increasing the flow rate from 4 to 12 ft/s (1.2 to 3.7 m/s) does appear to increase the cooling effect but it is not possible to determine the magnitude of the effect from the results of this work.
Skip Nav Destination
2008 7th International Pipeline Conference
September 29–October 3, 2008
Calgary, Alberta, Canada
Conference Sponsors:
- International Petroleum Technology Institute and the Pipeline Division
ISBN:
978-0-7918-4859-3
PROCEEDINGS PAPER
Relaxation of In-Service Welding Procedure Flow Restrictions
Matt A. Boring,
Matt A. Boring
Edison Welding Institute, Columbus, OH
Search for other works by this author on:
Joe Sobilo
Joe Sobilo
Enterprise Products Operating LP, Houston, TX
Search for other works by this author on:
Matt A. Boring
Edison Welding Institute, Columbus, OH
Joe Sobilo
Enterprise Products Operating LP, Houston, TX
Paper No:
IPC2008-64352, pp. 241-247; 7 pages
Published Online:
June 29, 2009
Citation
Boring, MA, & Sobilo, J. "Relaxation of In-Service Welding Procedure Flow Restrictions." Proceedings of the 2008 7th International Pipeline Conference. 2008 7th International Pipeline Conference, Volume 3. Calgary, Alberta, Canada. September 29–October 3, 2008. pp. 241-247. ASME. https://doi.org/10.1115/IPC2008-64352
Download citation file:
10
Views
0
Citations
Related Proceedings Papers
Related Articles
Improvement of Residual Stresses of Circumferential Joint of Pipe by Heat-Sink Welding
J. Pressure Vessel Technol (February,1986)
The Effect of Nickel on the Mechanical Properties of High-Oxygen Underwater Wet Welds
J. Offshore Mech. Arct. Eng (May,1996)
Gas Pipeline Failure Caused by In-Service Welding
J. Pressure Vessel Technol (February,2016)
Related Chapters
A 3D Cohesive Modelling Approach for Hydrogen Embrittlement in Welded Joints of X70 Pipeline Steel
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions
HIGH STRAIN WELD SOLUTIONS FOR GEOHAZARD ACTIVE ENVIRONMENT
Pipeline Integrity Management Under Geohazard Conditions (PIMG)
Experimental Study on Hydrogen Induced Cracking in Deformed and Heat Treated Armco Pure Iron
International Hydrogen Conference (IHC 2016): Materials Performance in Hydrogen Environments