ECA procedures of crack-like defects based upon the FAD philosophy have undergone extensive developments in the past decade to form the basis for industrial codes and guidelines for structural integrity assessments. However, the application of these procedures in welded structural components with mismatch in tensile properties between the weld and base metal remains a potential open issue. Weld strength mismatch may significantly alter the crack-tip driving forces, such as J and CTOD, thereby producing crack-tip stresses quite different than the fields that arise in corresponding homogeneous material. Weld strength mismatch also affects the plastic collapse load for the structural component which further complicates the interplay between fracture and plastic instability before gross yield section takes place. This work describes the development of a microme-chanics-based FAD methodology building upon a local fracture parameter, characterized by the Weibull stress (σw), to incorporate the effects of weld strength mismatch on crack-tip driving forces. As a further refinement, the study also addresses an exploratory application of a limit load analysis including effects of weld strength mismatch to correct the loading trajectory incorporated into the FAD procedure. Fracture testing of girth welds obtained from an API X80 pipeline steel provide the data needed to validate the proposed modified FAD procedure in failure predictions. Such an application serves as a prototype for a wide class of integrity assessment problems involving the effects of weld strength mismatch.

This content is only available via PDF.
You do not currently have access to this content.