The Magnetic Flux Leakage (MFL) technique is sensitive both to pipe wall geometry and pipe wall strain, therefore MFL inspection tools have the potential to locate and characterize mechanical damage in pipelines. However, the combined influence of strain and geometry makes MFL signals from dents and gouges difficult to interpret for a number of reasons: 1) the MFL signal from mechanical damage is a superposition of geometrical and strain effects, 2) the strain distribution around a mechanically damaged region can be very complex, often consisting of plastic deformation and residual (elastic) strain, 3) the effect of strain on magnetic behaviour is not well understood. Accurate magnetic models that can incorporate both strain and geometry effects are essential in order to understand MFL signals from mechanical damage. This paper reviews work conducted over the past few years involving magnetic finite element analysis (FEA) modeling of MFL dent signals and comparison with experimental results obtained both from laboratory-dented samples and dented pipe sections.

This content is only available via PDF.
You do not currently have access to this content.