Composite materials are commonly used to repair corroded and mechanically-damaged pipelines. Most of these repairs are made on straight sections of pipe. However, from time to time repairs on complex geometries such as elbows, tees, and field bends are required. Conventional design methods for determining the amount of required composite materials are not conducive for these types of repairs. Over the past several years, the author has developed a methodology for assessing the level of reinforcement provided by composite materials to damaged pipelines using finite element methods. Instead of stress as the design basis metric, the method employs a strain-based design criteria that is ideally-suited for evaluating the level of reinforcement provided to non-standard pipe geometries. The finite element work has been validated using experimental methods that employed strain gages placed beneath the composite repair to quantify the level of reinforcement provided by the repair. This paper provides a detailed description of the strain-based design method along with appropriate design margins for both the reinforced steel and long-term performance of the composite materials.
Skip Nav Destination
2008 7th International Pipeline Conference
September 29–October 3, 2008
Calgary, Alberta, Canada
Conference Sponsors:
- International Petroleum Technology Institute and the Pipeline Division
ISBN:
978-0-7918-4858-6
PROCEEDINGS PAPER
Strain-Based Design Methods for Composite Repair Systems Available to Purchase
Chris Alexander
Chris Alexander
Stress Engineering Services, Inc., Houston, TX
Search for other works by this author on:
Chris Alexander
Stress Engineering Services, Inc., Houston, TX
Paper No:
IPC2008-64076, pp. 145-159; 15 pages
Published Online:
June 29, 2009
Citation
Alexander, C. "Strain-Based Design Methods for Composite Repair Systems." Proceedings of the 2008 7th International Pipeline Conference. 2008 7th International Pipeline Conference, Volume 2. Calgary, Alberta, Canada. September 29–October 3, 2008. pp. 145-159. ASME. https://doi.org/10.1115/IPC2008-64076
Download citation file:
22
Views
Related Proceedings Papers
Related Articles
About the Influence of the Corrosion Defect Geometry on Repaired Pipes Stress Distribution
J. Pressure Vessel Technol (February,2021)
Failure of Locally Buckled Pipelines
J. Pressure Vessel Technol (May,2007)
Analysis of Laminations in X52 Steel Pipes by Nonlinear by Finite Element
J. Pressure Vessel Technol (May,2008)
Related Chapters
Transportation Pipelines, Including ASME B31.4, B31.8, B31.8S, B31G, and B31Q Codes
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes
Global Harmonization of Flaw Modeling/Characterization
Global Applications of the ASME Boiler & Pressure Vessel Code
Piping Design
Power Boilers: A Guide to the Section I of the ASME Boiler and Pressure Vessel Code, Second Edition