Protecting steel pipeline systems from failure due to corrosions defects is a crucial issue in pipeline industry. Reliability models that use the rate of corrosion growth combined with closed form solutions for the failure pressure are often used to estimate the time periods before excavation and repair. A methodology is presented for the assessment of predicted failure pressure based on finite element analysis (FEA) and reliability analysis. Deterministic failure equations are transformed to probabilistic limit state models. The failure mode is considered to be controlled by the stresses due to internal pressure and the presence of corrosion. A response surface method (RSM) is utilized to build a surrogate model of the limit state function. A comparison between closed-form and the surrogate model approach is discussed. A stochastic model is assumed to match the uncertainty inherent in both loads and strength. Simulation-based approaches and asymptotic methods for probability of failure evaluation are used, namely, Monte Carlo simulation, importance sampling, First Order Reliability Method (FORM) and Second Order Reliability Method (SORM). An adaptive building of the numerical experimental design for the surrogate limit state is proposed. A new artificial neural network (ANN) is developed in order to reduce the computational cost of experimental design scheme’s evaluation. The outcomes obtained from such an approach are useful as a decision-making tool for the maintenance, repair or optimization of pipelines systems.
Skip Nav Destination
2006 International Pipeline Conference
September 25–29, 2006
Calgary, Alberta, Canada
Conference Sponsors:
- Pipeline Division
ISBN:
0-7918-4263-0
PROCEEDINGS PAPER
Probabilistic-Based Assessment of Corroded Pipelines: A Comparison Between Closed Form and Surrogate Limit States
Sherif S. Abdelatif Hassanien,
Sherif S. Abdelatif Hassanien
University of Calgary, Calgary, AB, Canada
Search for other works by this author on:
Samer Adeeb
Samer Adeeb
TransCanada PipeLines Limited, Calgary, AB, Canada
Search for other works by this author on:
Sherif S. Abdelatif Hassanien
University of Calgary, Calgary, AB, Canada
Samer Adeeb
TransCanada PipeLines Limited, Calgary, AB, Canada
Paper No:
IPC2006-10247, pp. 999-1004; 6 pages
Published Online:
October 2, 2008
Citation
Hassanien, SSA, & Adeeb, S. "Probabilistic-Based Assessment of Corroded Pipelines: A Comparison Between Closed Form and Surrogate Limit States." Proceedings of the 2006 International Pipeline Conference. Volume 3: Materials and Joining; Pipeline Automation and Measurement; Risk and Reliability, Parts A and B. Calgary, Alberta, Canada. September 25–29, 2006. pp. 999-1004. ASME. https://doi.org/10.1115/IPC2006-10247
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
System Reliability Analysis by Monte Carlo Based Method and Finite Element Structural Models
J. Offshore Mech. Arct. Eng (August,2014)
Corrosion Effects on Reliability of Flat Plates in Tension
J. Offshore Mech. Arct. Eng (May,2012)
An Indicator Response Surface Method for Simulation-Based Reliability Analysis
J. Mech. Des (July,2008)
Related Chapters
STRUCTURAL RELIABILITY ASSESSMENT OF PIPELINE GIRTH WELDS USING GAUSSIAN PROCESS REGRESSION
Pipeline Integrity Management Under Geohazard Conditions (PIMG)
Repair Methods for Loadbearing Steel Structures Operating on the Norwegian Continental Shelf
Ageing and Life Extension of Offshore Facilities
Transportation Pipelines, Including ASME B31.4, B31.8, B31.8S, B31G, and B31Q Codes
Online Companion Guide to the ASME Boiler & Pressure Vessel Codes