Steelmakers are producing plates or coils, which are subsequently formed into pipes. The mechanical properties are checked after steel and pipe production, and it is commonly observed that the tensile properties of pipes differ from the properties of plate or coil. The difference in tensile properties is attributed to the forming of the pipe and the subsequent flattening of a pipe section to make a flat tensile test sample. The reverse deformation during pipe forming and flattening is expected to cause a Bauschinger effect leading to a decrease of the yield stress of the pipe compared to the yield stress of the base material. First, a kinematics description of the pipe forming is presented. This kinematics description is important to know the deformation path followed by the material during pipe forming, flattening and tensile test. Once the deformation path is known, the stress state can be computed using constitutive laws. Three constitutive laws are presented here and their ability to describe the mechanical behaviour is further discussed. To determine the mechanical behaviour in reverse deformation paths, a specific experimental set-up has been developed to make reverse tests in tension and compression. Using this experimental facility, an X60 grade on coil has been characterized. Models parameters are fitted on the experimental data. Using these model parameters, a tensile test after forming and flattening is modelled. The simulation shows that a very accurate description of material behaviour is required to predict the final tensile properties.

This content is only available via PDF.
You do not currently have access to this content.