This work provides an estimation procedure to determine J-resistance curves for SE(T) fracture specimens using the unloading compliance technique and the eta-method. In the present study, attention is directed to pin-loaded SE(T) specimens with varying geometry and crack sizes but representative solutions are also included for clamped SE(T) specimens. A summary of the methodology upon which J and crack extension are derived sets the necessary framework to determine crack resistance data from the measured load vs. displacement curves. The extensive plane-strain analyses enable numerical estimates of the nondimensional compliance, μ, and parameters η and γ for a wide range of specimen geometries and material properties characteristic of structural and pipeline steels. Laboratory testing of an API 5L X60 steel at room temperature using pin-loaded SE(T) specimens with side-grooves provide the load-displacement data needed to validate the estimation procedure for measuring the crack growth resistance curve for the material. The results presented here produce a representative set of solutions which lend further support to develop standard test procedures for constraint-designed SE(T) specimens applicable in measurements of crack growth resistance for pipelines.

This content is only available via PDF.
You do not currently have access to this content.