Approximately 1450 km (900 miles) of a 4020-km (2500 mile) natural gas pipeline system operated by Crosstex Energy Service L.P in Texas are subject to the Texas Railroad Commission’s (TRRC) integrity management rules. Consequently, in preparation for the construction of an extensive and robust integrity management program, Crosstex commissioned Advantica to assist in the development and application of a pilot study on a 13.4 km (8.3 mile) section of a 14” pipeline. The purpose of the study, which is based on Structural Reliability Analysis (SRA), was to compare the level of integrity that could be inferred from the use of Direct Assessment (DA) techniques with the level that could be inferred from ILI results. Based on a preliminary assessment of available data, the study identified both external and internal corrosion as potential threats to integrity. SRA was used in conjunction with ‘Bayesian Updating’ to determine the probability of pipe failure due to external corrosion, taking account of results from above-ground measurements and a number of bell-hole excavations. The above-ground survey techniques utilized included Close Interval Survey (CIS) and Direct Current Voltage Gradient (DCVG). A similar approach was adopted to address the threat due to internal corrosion, but hydraulic modelling was substituted for the above-ground measurements. A third study based on SRA was used to determine the combined probability of failure due to both internal and external corrosion taking account of ILI results. The outcome of the analyses demonstrated that the level of integrity that could be inferred from the use of Crosstex’ DA methodology was similar to that which could be inferred from the use of ILI. The results were presented to the TRRC for review and approval. This paper gives a detailed description of the SRA based methodology that was employed by Crosstex and presents the results that clearly demonstrate the comparability of ILI and DA for the purpose of integrity management.

This content is only available via PDF.
You do not currently have access to this content.