Norwegian waters have been a main arena for development of subsea pipeline technology over the last 25 year. The gas transportation systems from Norway to continental Europe comprise the largest and longest sub sea pipelines in the world. Codes traditionally require a pipeline to be designed with a uniform design pressure between stations with overpressure protection capabilities. However, the downstream part of a very long gas transmission pipeline may, after commissioning, rarely, if ever, see pressures near the pressure at the upstream end. There is, therefore, a potential for cost reduction and capacity improvement if two, or several, sections of different design pressure could be used without having to implement sub sea pressure regulation and overpressure protection facilities at the point of transition between the different sections of design pressure. In determining the lower design pressure the shutdown of the pipeline outlet facilities, at any point in time allowing for a practicable, achievable delay for closure of the upstream inlet valve has to be taken into account. The settle out pressure in a “normal” shut-in situation shall then not exceed the lower design pressure. In addition, deep water pipelines are often designed to withstand buckling due to bending and external pressure during installation, and may therefore locally tolerate a much higher internal pressure than the pipeline was designed for. Transmission pipelines crossing deepwater areas may therefore be designed for two or more operating pressures along the pipeline, thereby optimizing the cost. Even more important, for already existing pipelines, the capacity may be significantly increased by utilizing the upstream heavy wall sections. The operating pressure range for a long offshore gas transmission pipeline is very wide compared to an onshore line, typically between an upstream pressure of 150–250 bar, and a downstream pressure of 60 to 80 bar over a distance of several hundred kilometers. It may take hours to notice the closure of a downstream valve on the upstream pressure. Unless the pipeline is extensively packed, it is obvious that the pressure drop along the pipeline may be taken into account by allowing a lower design pressure for downstream part than for the upstream part. Thereby, the investment cost can be reduced. This paper describes the principles of designing a pipeline system divided into sections of different design pressures from a hydraulic point of view. The basis is the offshore standard for designing submarine pipeline systems, DNV OS-F101. The focusing will be on improvements in transportation efficiency, cost reductions and operational issues.
Skip Nav Destination
2004 International Pipeline Conference
October 4–8, 2004
Calgary, Alberta, Canada
Conference Sponsors:
- International Petroleum Technology Institute
ISBN:
0-7918-4176-6
PROCEEDINGS PAPER
Designing Offshore Pipeline Systems Divided Into Sections of Different Design Pressures
Gunnar Staurland,
Gunnar Staurland
Natural Gas, Statoil, Norway
Search for other works by this author on:
Morten Aamodt
Morten Aamodt
Natural Gas, Statoil, Norway
Search for other works by this author on:
Gunnar Staurland
Natural Gas, Statoil, Norway
Morten Aamodt
Natural Gas, Statoil, Norway
Paper No:
IPC2004-0217, pp. 1935-1943; 9 pages
Published Online:
December 4, 2008
Citation
Staurland, G, & Aamodt, M. "Designing Offshore Pipeline Systems Divided Into Sections of Different Design Pressures." Proceedings of the 2004 International Pipeline Conference. 2004 International Pipeline Conference, Volumes 1, 2, and 3. Calgary, Alberta, Canada. October 4–8, 2004. pp. 1935-1943. ASME. https://doi.org/10.1115/IPC2004-0217
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Profiles of Two JOMAE Associate Editors (A Continuing Series)
J. Offshore Mech. Arct. Eng (October,2021)
Design Criteria for Upheaval Creep of Buried Sub-Sea Pipelines
J. Offshore Mech. Arct. Eng (November,1990)
Postbuckling of Shear Deformable Geodesically Stiffened Anisotropic Laminated Cylindrical Shell Under External Pressure
J. Pressure Vessel Technol (April,2011)
Related Chapters
Introduction to Pipeline Systems
Pipeline Pumping and Compression Systems: A Practical Approach
Section III: Subsections NC and ND — Class 2 and 3 Components
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition
Subsection NE—Class MC Components
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition