To support an External Corrosion Direct Assessment (ECDA), Indirect Inspections were performed on a 44 km section of NPS 6 extruded polyethylene coated natural gas pipeline. Based on previous investigations of the pipeline, external corrosion defects were known to have occurred at coating holidays. Such holidays can often be detected using current voltage gradient surveys and close interval surveys. Two successive ACVG surveys over the pipeline were preformed. In addition, Close Interval Survey data were considered in order to complete the Indirect Inspection dataset. Statistical analysis methods were developed and employed against the data generated from these surveys so that the following objectives could be met: 1. Assess the reliability of the Indirect Inspection technique in terms of its ability to locate coating holidays and hence, its ability to locate potential corrosion features; and, 2. Assess, in quantitative terms, the reliability of the pipeline in terms of its potential for failure, and quantitatively establish the impact that the Indirect Inspection and dig program had in improving that reliability. In completing the first objective, duplicate survey results were compared with Direct Examination results. The statistical analysis provided a means of estimating technique reliability, which was conservatively estimated at 96%. Subsequent evaluation of factors affecting technique reliability indicated that the density of indications and consistency of applying the Indirect Inspection technique had a bearing on the overall reliability. The second objective was completed by applying the results of the Indirect Inspection reliability study to a statistical analysis of corrosion incidence data and corrosion size distributions that were derived from the Direct Examination data. Pipeline reliability was quantitatively expressed as a function of year of operation and the reliability of the Indirect Inspection technique. For the case examined, the Indirect Inspection techniques that were applied were found to increase pipeline reliability by approximately an order of magnitude.

This content is only available via PDF.
You do not currently have access to this content.