Beginning in the late 1970’s and early 1980’s, “alternative defect acceptance criteria” were adopted in various codes and standards in the pipeline industry. These criteria relate the tolerable defect sizes with the magnitude of loads and materials’ resistance to failure. They allow engineers to assess the suitability of the pipes containing defects for intended service conditions, or fitness-for-service. Assessments based on the fitness-for-service principles are often referred to as Engineering Critical Assessment, or ECA. Although most of these codes are based on fracture mechanics principles, the defect tolerance levels vary significantly from code to code. This paper describes a two-year effort funded by PRCI (Pipeline Research Council International) to develop an ECA procedure specifically tailored to pipeline girth welds. The newly developed procedure is in FAD (failure assessment diagram) format. The key features of this procedure are provided in this paper. Based on prior research and extensive experimental data analysis, a modified Miller plastic collapse solution was selected for its rigorous formulation and good agreement with full-scale test results. The effects of weld strength mismatch on plastic collapse load (limit load) were examined and validated through finite element (FE) analysis. Parametric formulae of mismatch correction factors to the plastic collapse solution were adopted. The stress intensity factor solutions of finite-length surface-breaking defects in girth welds were developed and validated. Failure assessment curves (FACs) for girth weld defects were generated. These curves incorporated the effects of material’s strain hardening rate and defect size. They are more accurate than some of the generic material and defect independent FACs, yet easy to use.
Skip Nav Destination
2002 4th International Pipeline Conference
September 29–October 3, 2002
Calgary, Alberta, Canada
Conference Sponsors:
- Pipeline Division
ISBN:
0-7918-3620-7
PROCEEDINGS PAPER
Development of a FAD-Based Girth Weld ECA Procedure: Part I — Theoretical Framework
Yong-Yi Wang,
Yong-Yi Wang
Engineering Mechanics Corporation of Columbus, Columbus, OH
Search for other works by this author on:
David Rudland,
David Rudland
Engineering Mechanics Corporation of Columbus, Columbus, OH
Search for other works by this author on:
David Horsley
David Horsley
TransCanada PipeLines, Ltd., Calgary, AB, Canada
Search for other works by this author on:
Yong-Yi Wang
Engineering Mechanics Corporation of Columbus, Columbus, OH
David Rudland
Engineering Mechanics Corporation of Columbus, Columbus, OH
David Horsley
TransCanada PipeLines, Ltd., Calgary, AB, Canada
Paper No:
IPC2002-27171, pp. 1717-1726; 10 pages
Published Online:
February 24, 2009
Citation
Wang, Y, Rudland, D, & Horsley, D. "Development of a FAD-Based Girth Weld ECA Procedure: Part I — Theoretical Framework." Proceedings of the 2002 4th International Pipeline Conference. 4th International Pipeline Conference, Parts A and B. Calgary, Alberta, Canada. September 29–October 3, 2002. pp. 1717-1726. ASME. https://doi.org/10.1115/IPC2002-27171
Download citation file:
13
Views
Related Proceedings Papers
Related Articles
Influence of Yield-to-Tensile Strength Ratio on Failure Assessment of Corroded Pipelines
J. Pressure Vessel Technol (November,2005)
Effect of Lüders Plateau on Fracture Response and Toughness of Pipelines Subject to Extreme Plastic Bending
J. Pressure Vessel Technol (October,2011)
Plastic Collapse Assessment Method For Unequal Wall Transition Joints in Transmission Pipelines
J. Pressure Vessel Technol (November,2005)
Related Chapters
Global Harmonization of Flaw Modeling/Characterization
Global Applications of the ASME Boiler & Pressure Vessel Code
Subsection NF—Supports
Companion Guide to the ASME Boiler & Pressure Vessel Codes, Volume 1 Sixth Edition
Defect Assessment
Pipeline Integrity Assurance: A Practical Approach