Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
NARROW
Date
Availability
1-20 of 100
Microscopes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. IMECE2018, Volume 3: Biomedical and Biotechnology Engineering, V003T04A002, November 9–15, 2018
Paper No: IMECE2018-86637
Abstract
Numerous studies of electrical stimulation effects on the nerve regeneration have been carried out. However, there were very few investigations which adopt the 3D culture that mimics the in vivo environment. In this study, we designed and fabricated a new 3D direct current electric field (DCEF) stimulation bio-reactor and investigated the effectiveness on the axonal outgrowth enhancement. We searched an optimum structure using the finite element (FE) analyses to obtain a uniform DCEF in the culture region. A measurement result of DCEF strength showed an agreement with FE results. The rat phenocromocytoma cells (PC12) were disseminated in the collagen gel and 3D culture was performed. We observed the morphologies of cell bodies and neurites using the multiphoton excitation fluorescence microscope (MPM). Both increases in 11.3% of mean axonal length and in 4.2% of axogenesis rate, under the condition of 5.0 mV/mm on 6 hours a day for 4 days, were obtained. Further, there was a tendency of longer connecting distance between cell bodies in the DCEF group than one in the Control group. As a result, we validated the efficacies of our stimulation, both for the axonal extension and the neural network generation, using our newly developed bio-reactor.
Proceedings Papers
Proc. ASME. IMECE2018, Volume 3: Biomedical and Biotechnology Engineering, V003T04A030, November 9–15, 2018
Paper No: IMECE2018-87259
Abstract
Mechanical properties of biomaterials are difficult to characterize experimentally because many relevant biomaterials such as hydrogels are very pliable and viscoelastic. Furthermore, test specimens such as blood clots retrieved from patients tend to be small in size, requiring fine positioning and sensitive force measurement. Mechanobiological studies require fast data recording, preferably under simultaneous microscope imaging, in order to monitor events such as structural remodeling or localized rupture while strain is being applied. A low-profile tensile tester that applies prescribed displacement up to several millimeters and measures forces with resolution on the order of micronewtons has been designed and tested, using alginate as a representative soft biomaterial. 1.5% alginate (cross-linked with 0.1 M and 0.2 M calcium chloride) has been chosen as a reference material because of its extensive use in tissue engineering and other biomedical applications. Prescribed displacement control with rates between 20 μm/s and 60 μm/s were applied using a commercial low-noise nanopositioner. Force data were recorded using data acquisition and signal conditioning hardware with sampling rates as high as 1 kHz. Elongation up to approximately 10 mm and force in the range of 250 mN were measured. The data were used to extract elastic and viscoelastic parameters for alginate specimens. Another biomaterial, 2% agarose, was also tested to show versatility of the apparatus for slightly stiffer materials. The apparatus is modular such that different load cells ranging in capacity from hundreds of millinewtons to tens of newtons can be used. The apparatus furthermore is compatible with real-time microscope imaging, particle tracing, and programmable positioning sequences.
Proceedings Papers
Proc. ASME. IMECE2018, Volume 3: Biomedical and Biotechnology Engineering, V003T04A003, November 9–15, 2018
Paper No: IMECE2018-86643
Abstract
Enhancement of nerve axonal extension by using the extracellular environmental stimulation were reported. In this study, we focused on the stretch stimulation, and developed a 3D cell culture system to mimic the in vivo extracellular matrices and investigated the fundamental mechanism of axonal extension enhancement. Firstly, we fabricated the stretch stimulation device. The rat phenocromocytoma cells (PC12), the nerve-like cells, embedded in the collagen gel were poured into the stretch chamber. It was set in the stretch stimulation device, which could load the strain to the collagen gel. Secondly, we determined the structure of the stretch chamber to implement the uniform strain distribution in the culture region. Using the finite element (FE) analyses, we confirmed that the uniform strain is assigned in a region of 2.7 × 3.0 × 0.5 mm in the culture region, which is the candidate for the observation region. Thirdly, PC12 cells axonal extension under uniaxial cyclic stretch stimulation (4% strain, 1 Hz) of 24 hours was carried out. After 96 hours’ culture, we observed the 3D morphology of PC12 cells by the multiphoton excitation fluorescence microscope (MPM). Finally, we confirmed the availability of our stretch stimulation device and the enhancement effect of axonal extension.
Proceedings Papers
Proc. ASME. IMECE2018, Volume 13: Design, Reliability, Safety, and Risk, V013T05A024, November 9–15, 2018
Paper No: IMECE2018-86551
Abstract
In our group, we are developing flexure hinge based manipulators made of nitinol for minimally invasive surgery. On the one hand, sufficient flexibility is required from flexure hinges to be able to cover the surgical workspace. On the other hand, the bending amount of the flexure hinges has to be limited below the yielding point to ensure a safe operation. As a result of these considerations, it has to be questioned how much bending angle a nitinol flexure hinge with given geometric dimensions can provide without being subject to plastic deformation. Due to the nonlinearities resulting from large deflections and the material itself, the applicability of the suggested approaches in the literature regarding compliance modeling of flexure hinges is doubtful. Therefore, a series of experiments was conducted in order to characterize the rectangular cross section nitinol flexure hinges regarding the flexibility-strength trade-off. The nitinol flexure hinge samples were fabricated by wire electrical discharge machining in varying thicknesses while keeping the length constant and in varying lengths while keeping the thickness constant. The samples were loaded and unloaded incrementally until deflections beyond visible plastic deformation occured. Each pose in loaded and unloaded states was recorded by means of a digital microscope. The deflection angles yielding to permanent set values corresponding to 0.1% strain were measured and considered as elastic limit. A quasilinear correlation between maximum elastic deflection angle and length-to-thickness ratio was identified. Based on this correlation, a minimal model was determined to be a limit for a secure design. The proposed guideline was verified by additional measurements with additional samples of random dimensions and finite element analysis.
Proceedings Papers
Jagannath Upadhyay, Daniel S. Park, Khurshida Sharmin, Ingmar Schoegl, Karsten E. Thompson, Dimitris E. Nikitopoulos
Proc. ASME. IMECE2017, Volume 7: Fluids Engineering, V007T09A052, November 3–9, 2017
Paper No: IMECE2017-71698
Abstract
Most flow visualizations and flow measurements to understand particle mobility in porous media are typically performed in transparent microfluidic devices (micro-models) with 2D pore-throat networks. Nano-particle mobility studies to date have been limited to micro-models made of transparent thermoplastic or silicone-based materials. In an effort to fabricate materials close to reservoir rock, ceramic micro-model has been designed and micro fabricated by our group to study nano-particle transport in rock-based ceramic micro-model. A Confocal Micro-Particle Image Velocimetry (C-μPIV) technique augmented with associated post processing algorithms [1] is used in obtaining 3D distributions of nano-particle velocity and concentration at selected locations of the ceramic micro-model. Furthermore, a novel in-situ, nondestructive method of measuring 3D geometry of non-transparent ceramic micro-model is described and validated. The particle experiment uses 860 nm fluorescence labeled polystyrene neutrally buoyant, and electrically neutral nano-particles. The data was acquired using confocal laser-scanning microscope to quantify 3D particle transport at selected observation locations. In addition, fluorescence microscope was used to measure in-situ geometry of porous media. Results of detailed 3D measurements of nano-particle velocity and particle concentration from experiment conducted at a constant flow rate of 30 nL/min in the rock-based micro-model are presented and discussed. Particle velocities range from 0 to 20.93 μm/sec in magnitude, and average concentration range from 6.02 × 10 3 to 6.79 × 10 3 particles at inlet channel while velocities range from 0 to 73.63 μm/sec and concentration range from 4.9 × 10 1 to 1.45 × 10 3 particles at selected observation locations of the ceramic micro-model. 3D velocity fields at selected locations also indicate that mean velocity closer to the top wall is comparatively higher than bottom wall, because of higher planar porosity and smooth pathway for the nano-particles closer to the top wall. The three dimensional micro-model geometry reconstructed from the fluorescence data can be used to conduct numerical simulations of the flow in the as-tested micro-model for future comparisons to experimental results after incorporating particle transport and particle-wall interaction models.
Proceedings Papers
Proc. ASME. IMECE2017, Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Structural Health Monitoring and Prognosis, V009T12A069, November 3–9, 2017
Paper No: IMECE2017-70317
Abstract
Ni-base superalloys are widely used for various power plants and jet engines. Since the operating temperature of thermal plants and equipment has been increasing to improve their thermal efficiency for decreasing the emission of carbon-dioxide, the initially designed microstructure was found to change gradually during their operation. Since this change of microstructure should deteriorate the strength of the materials, sudden unexpected fracture should occur during the operation of the plants and equipment. Therefore, it is very important to clarify the dominant factor of the change of the microstructure and the relationship between the microstructure and its strength for assuring the stable and reliable operation of the plants and equipment. In this study, the change of the strength of a grain and a grain boundary of Ni-base superalloys caused by the change of their microstructure was measured by using a micro tensile test system in a scanning ion microscope. A creep test was applied to bulk alloys at elevated temperatures and a small test sample was cut from the bulk alloy with different microstructure caused by creep damage by using focused ion beams. The test sample was fixed to a silicon beam and a micro probe, respectively, by tungsten deposition. Finally, the test sample was thinned to 1μm and the sample was stretched to fracture at room temperature. The change of the order of atom arrangement of the sample was evaluated by applying electron back-scatter diffraction (EBSD) analysis quantitatively. In this study, the quality of grains in Ni-base superalloys was analyzed by using image quality ( IQ ) value calculated by using Hough transform of the observed Kikuchi pattern. It was found that the order of atom arrangement was deteriorated monotonically during the creep tests and this deterioration corresponded to the change of the microstructure clearly. Both the yield strength and the ultimate tensile strength of a grain in the alloys decreased drastically with the change of the microstructure, in other words, the IQ value of the grains. There was a clear relationship between the IQ value of a grain and its strength. Therefore, this IQ value is effective for evaluating the crystallinity of the alloys and the remained strength of the damaged alloys. The change of the microstructure was dominated by the strain-induced anisotropic accelerated diffusion of component elements of the alloys and the activation energy of the diffusion was determined quantitatively as a function of temperature and the applied stress.
Proceedings Papers
Proc. ASME. IMECE2017, Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Structural Health Monitoring and Prognosis, V009T12A007, November 3–9, 2017
Paper No: IMECE2017-70729
Abstract
Changes in surface morphology have long been thought to be associated with crack propagation in materials. In this paper, we study the changes in the surface profile of the crack-tip plastic zone with an attempt to understand the relationship between the plasticity-induced surface profile changes and the crack growth behavior. Center crack specimens were electropolished and etched to reveal the grain structure for white light interferometer (WLI) imaging prior to and during fatigue testing. After growing the crack to a predetermined pre-crack length, a viewing zone was selected outside of the plastic zone of the pre-crack. The surface profile of the viewing zone was imaged using a WLI microscope at selected fatigue cycle intervals. An image processing algorithm was developed to evaluate the changes of the surface profile. We observed that the crack growth rate is not uniform at the microscopic scale; the crack growth was retarded at crack pinning points and the crack grows at a faster rate while propagating between the pinning points. Relatively large surface topology changes were observed to be constrained to the area surrounding the tip of pinned cracks. However, there was an avalanche of surface changes covering the entire monotonic zone upon the crack being released from a pinned location. Interestingly enough, minor or no measurable surface changes could be seen for propagating cracks. These results indicate a surface roughness change threshold may exist for predicting the duration during which a crack is pinned. Results suggest the threshold and crack propagation rate between pinning locations may be functions of the amplitude of the stress intensity factor.
Proceedings Papers
Development of AC Magnetic Field Stimulation Bio-Reactor for Three-Dimensional Culture of PC12 Cells
Proc. ASME. IMECE2017, Volume 3: Biomedical and Biotechnology Engineering, V003T04A086, November 3–9, 2017
Paper No: IMECE2017-70878
Abstract
Recently, the electromagnetic stimulation method to enhance a nerve axonal extension has been attracting a great attention in the nerve regeneration. In this study, we design and fabricate a new 3D bio-reactor, which can implement uniform AC magnetic field (ACMF) stimulation on PC12 cells. We observe the morphology of PC12 cells using the multi photon microscope and evaluate effectiveness of uniform ACMF stimulation of the nerve axonal extension and the neural network generation. Firstly, a uniform ACMF stimulation bio-reactor was designed by using the pole piece structure. We searched an optimum structure using the magnetic field finite element analyses to obtain a uniform magnetic flux density in the culture region. Secondly, a chamber for 3D culture of PC12 cells was fabricated. PC12 cells were disseminated into a collagen gel which poured in the chamber. We evaluated the effects of uniform ACMF stimulation to enhance the nerve axonal extension. In our bio-reactor, an increase in axonal extension length and number of dendrites was observed under ACMF stimulation after 7 days culture. Finally, it was concluded that our uniform ACMF stimulation bio-reactor is an effective tool for the nerve axonal extension and the neural network generation.
Proceedings Papers
Proc. ASME. IMECE2017, Volume 3: Biomedical and Biotechnology Engineering, V003T04A094, November 3–9, 2017
Paper No: IMECE2017-71363
Abstract
It was reported that osteoblastic cells respond to mechanical vibration and generate the bone mass with a peak at a specific frequency like a resonance curve [1]. There seems to be an analogy between its cell response and the resonance of a cell as a mechanical system. This paper describes a novel method to measure the cellular modes of vibration of a cell and its calcium ion response under mechanical vibration, and the evaluation of the obtained results to clarify the mechanism of the cell mechanosensing. Nuclei and calcium ion in osteoblastic cells were visualized with fluorescent labelling. Mechanical vibration was applied to cells in a dish in the horizontal direction under a confocal laser scanning microscope by an exciter. Since the fluorescent intensity was very weak due to high frame rate to capture moving cells under Mechanical vibration, we used a high-speed and high-sensitive camera adjusting various conditions such as exposure time. We realized the spatial resolution of approximately 2 μm in the captured micrographs even under mechanical vibration using the experimental setup. As a result, the modes of vibration of nuclei was not obtained in this resolution. We found that the intracellular calcium ion concentration began to increase in a few seconds after mechanical vibration was applied. This experimental result indicates that applying mechanical vibration to cells can produce calcium signals as a second messenger by causing the entry of the ion.
Proceedings Papers
Proc. ASME. IMECE2017, Volume 2: Advanced Manufacturing, V002T02A098, November 3–9, 2017
Paper No: IMECE2017-71609
Abstract
Anisotropy of surface texture can in many practical cases significantly affect the interaction between the surface and phenomena that influence or are influenced by the topography. Tribological contacts in sheet forming, wetting behavior or dental wear are good examples. This article introduces and exemplifies a method for quantification and visualization of anisotropy using the newly developed 3D multi-scale curvature tensor analysis. Examples of a milled steel surface, which exhibited an evident anisotropy, and a ruby contact probe surface, which was the example of isotropic surface, were measured by the confocal microscope. They were presented in the paper to support the proposed approach. In the method, the curvature tensor T is calculated using three proximate unit vectors normal to the surface. The multi-scale effect is achieved by changing the size of the sampling interval for the estimation of the normals. Normals are estimated from regular meshes by applying a covariance matrix method. Estimation of curvature tensor allows determination of two directions around which surface bends the most and the least (principal directions) and the bending radii (principal curvatures). The direction of the normal plane, where the curvature took its maximum, could be plotted for each analyzed region and scale. In addition, 2D and 3D distribution graphs could be provided to visualize anisotropic or isotropic characteristics. This helps to determine the dominant texture direction or directions for each scale. In contrast to commonly used surface isotropy/anisotropy determination techniques such as Fourier transform or autocorrelation, the presented method provides the analysis in 3D and for every region at each scale. Thus, different aspects of the studied surfaces could clearly be seen at different scales.
Proceedings Papers
Proc. ASME. IMECE2016, Volume 7: Fluids Engineering, V007T09A044, November 11–17, 2016
Paper No: IMECE2016-67384
Abstract
Water flow through a converging-diverging glass nozzle experiences a pressure drop and its velocity increases as it flows through the converging section. For an inviscid fluid, the pressure minimum occurs at the nozzle throat, where the cross-sectional area is minimum. If the minimum pressure is below the water vapor pressure, cavitation may occur. The actual minimum pressure through a converging-diverging nozzle depends on many factors and may not occur at the nozzle throat. Additionally, fluid through the nozzle may be driven into the metastable region and subsequently cavitate at a lower pressure than the vapor pressure. All of these factors combine to create a complex and unsteady flow pattern. The precise conditions leading to the onset of cavitation in water flowing in a converging-diverging nozzle are not well understood. Utilization of a clear glass converging-diverging nozzle enabled Particle Image Velocimetry (PIV) measurements of the velocity vector field inside the nozzle without significantly promoting premature cavitation formation. Glass spheres of 10 μm diameter were selected as seed particles for use in the PIV measurements. These seed particles did not significantly affect the formation (or onset) of cavitation in the nozzle; however, larger seed particles (120 μm diameter) provided nucleation sights and promoted cavitation prematurely. The seed particles were injected into the flow significantly upstream from the nozzle to prevent disrupting the flow entering the nozzle. High seed density was needed to supply enough seed particles to interrogate small regions near the nozzle wall; however, high seed density could also cause speckling and reduce the ability to produce meaningful PIV measurements. A Nd:YAG laser provided illumination of the seed particles in the nozzle. Laser reflections off of the nozzle exterior had to be minimized to avoid saturating the PIV camera. A polarizing filter was installed on the camera to reduce reflections. An enclosure that surrounded the nozzle was also designed and utilized. The enclosure was filled with water to reduce laser reflections off of the nozzle exterior wall. The time elapsed between frames had to be adjusted for each section of the nozzle interrogated with PIV. For accurate velocity measurements, particles needed to travel at least two particles diameters but less than 25% of each interrogation cell. The large variation in velocities present in the nozzle prevented one time interval from satisfying the seed particles displacement requirements. The time interval between frames had to be tailored to each section of the nozzle, depending upon the range of velocities seen in that section. Detailed measurement of the velocity profile near the nozzle throat required precise control over all timing parameters and pushed the available hardware to its smallest possible time interval. Detailed PIV measurements near the wall in regions of recirculation and at the cavitation front required the use of a long-distance microscope. This limited the field of view and necessitated a high seed particle density, which presented problems due to the lack of control over the flow of the seed particles in the near wall region. PIV allowed for the measurement of the velocity vector field inside a converging-diverging nozzle without disrupting the flow. These measurements provided detailed velocity and flow pattern information throughout the nozzle, particularly in the regions near the cavitation front where boundary layer separation was observed along with regions of recirculating flow. These detailed velocity profiles were compiled to present a complete PIV analysis of the converging-diverging glass nozzle. Measurements of the velocity field near cavitation onset allowed for a better understanding of the conditions triggering cavitation and the degree to which the water flow was able to be driven into the metastable region.
Proceedings Papers
Proc. ASME. IMECE2016, Volume 10: Micro- and Nano-Systems Engineering and Packaging, V010T13A031, November 11–17, 2016
Paper No: IMECE2016-65880
Abstract
In this study, dielectric properties of Acrylonitrile butadiene styrene (ABS) thermoplastic material with different fill-densities are investigated. Three separate sets of samples with dimensions of 25 mm × 25 mm × 5 mm were created at three different machine preset porosities using a LulzBot 3D printer. To understand the actual porosities of the samples, a 3D X-ray computed tomography microscope was used. The great advantage of this 3D microscopy is that it is fully non-destructive and requires no specimen preparation. Hence, the manufacturing defects and lattice variations can be quantified from image data. It is observed that the experimental pore densities are different from the factory preset values. This provides insight to further understand pore distribution-property relationships in these dielectric materials. Micro-strip patch antennas were then created on the 3D printed ABS substrates. The samples were then tested using a vector network analyzer (VNA) and resonant frequencies were measured. It is observed that the resonant frequency increases with an increase in porosity. These results clearly demonstrate the ability to control the dielectric constant of the 3D printed material based on prescribed fill density.
Proceedings Papers
Proc. ASME. IMECE2016, Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis, V009T12A042, November 11–17, 2016
Paper No: IMECE2016-67557
Abstract
The variation of the strength of a grain and a grain boundary was measured by a micro tensile test system fabricated in an electron microscope. A micro-scale beam structure was fabricated from a single-crystalline silicon wafer and a fine nano-scale sample cut from a thin film using a focused ion beam was attached to the center of the beam by deposition of tungsten in the microscope. The other end was attached to a micro probe similarly. Finally, the micro probe was activated to pull the sample and the deformation of the sample was observed by a scanning electron microscope. The fracture strength of a bicrystal sample was measured by detecting the deflection of the beam at the breakage of the sample. The crystallinity of both a grain and a grain boundary was quantitatively evaluated by using electron back-scatter diffraction analysis from the viewpoint of the change of the order of atom arrangement in them. It was found that the strength of a grain and a grain boundary varied clearly depending on their crystallinity. In addition, there was a critical value of the crystallinity at which the fracture mode of a polycrystalline material changed from intergranular fracture to transgranular fracture.
Proceedings Papers
Proc. ASME. IMECE2016, Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis, V009T12A049, November 11–17, 2016
Paper No: IMECE2016-66296
Abstract
Recently, there has been an interest in aluminum alloys by many industrial areas as an environmentally-friendly material reducing environment pollution. Now, especially for maritime industries aluminum alloys are in the spotlight for ship construction instead of fiber reinforced plastics (FRP) or even stainless steel. Aluminum alloy ships are fast, lightweight, and exhibit a great load capacity when compared to traditional steel hulls. The Navy’s number one problem is maintenance due to corrosion impact. Annual combined costs of corrosion for army ground vehicles and navy ships range around $6.14B/year. Corrosion impacts the readiness of most Navy systems and is a major factor contributor to life cycle cost. Hence the vision for corrosion technologies is to develop and implement corrosion control and prevention technologies to minimize the impact of material deterioration and maintenance costs. Stress corrosion cracking (SCC) and environment-induced cracking (EIC) has been extensively investigated using various methods to improve performance, designs, and service life for these structures. Present interested research areas are advanced smart coatings technologies for corrosion control and prevention of its effects under sea water and marine environments. With the rapid development of modern technology, foil metals have found applications in a variety of areas. The mechanical behavior of these materials may be different from that of bulk materials due to size effects. Therefore, models and conclusions for bulk characterization might not be applicable when analyzing foil materials. The purpose of this experiment is to describe and examine the susceptibility of aluminum alloy foil to stress corrosion cracking under 3.5% w.t NaCl solution. Mechanical properties of aluminum specimens were investigated using slow strain rate tests of 0.001 mm/min under load control while inside an environmental chamber at a flow rate of 150 ml/min. Smooth specimen samples with thickness of 0.0508 mm were subjected to monotonic tensile tests until fracture in ambient air and under corrosive solution environment. Scanning electron microscopy (SEM) was used to analyze stress corrosion cracking and crack propagation observing the different microstructural and intergranular fracture deformations. A digital microscope camera was used to observe and perform an analysis on the corroded specimen surface. A comparison of stress, strain, and time results of fracture between air and 3.5% NaCl solution at room temperature were calculated to demonstrate the susceptibility of the aluminum material to SCC. Test standards regarding stress corrosion cracking in metal foils are still limited.
Proceedings Papers
Proc. ASME. IMECE2016, Volume 14: Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis, V014T11A006, November 11–17, 2016
Paper No: IMECE2016-65056
Abstract
Lubricant film-forming viscosity index improvers blended with commercial engine oil have been developed and studied by using optical interferometry. The influence of the viscosity index improvers (PTFE and MoS 2 ) mixed with oil were experimentally studied and compared with engine oil without the index improvers as the baseline. The effect of the viscosity index improvers on lubricant film thickness, contact pressure and rolling speed for the case of a steel ball loaded on a flat glass surface in point contact condition was investigated. An optical interferometry technique which utilized a monochromatic two-beam interferometry light source, a microscope and a high-speed video recording device was used for the investigation. Hamrock and Dawson calculations for EHL film thickness were also used for comparative analysis. The lubricants used were commercial SAE #30 engine oil and PTFE and MoS 2 mixed with commercial SAE #30 engine oil. The oil viscosities ranged from 0.0109 Pa.s to 0.255 Pa.s. The rolling speed and the loads were varied between 0.189 m/s to 0.641 m/s and 1 N to 2.6 N respectively. The lubricant film thickness stability at the point of contact between the steel ball and the glass disc was investigated for both steady and rolling state conditions. The viscosity index improvers were found to have a significant effect on the film thickness behavior under pure rolling point contact conditions.
Proceedings Papers
Proc. ASME. IMECE2016, Volume 14: Emerging Technologies; Materials: Genetics to Structures; Safety Engineering and Risk Analysis, V014T11A027, November 11–17, 2016
Paper No: IMECE2016-67286
Abstract
Shape memory polymers can be triggered to assume memorized shapes from temporarily deformed forms using thermal stimuli. This paper focuses on the characterization of the shape memory behaviors observed in selected 3D printable photo-cured polymer parts and filament with specified fillers. The shape recovery ratio and recovery time were analyzed using 3D printed specimens with 90° bends. Parts with the mixture of selected commercially available polymers — a rigid polymer (RP) and two digitally mixed polymer blends (DB-A and DB-B) were 3D-printed on a multi-material 3D printer capable of producing digital materials with variable mix ratios. The recovery ratios were determined after thermal triggering and after long-term creep (self-recovery) without thermal triggering. The 3D printed parts were heated to above their glass transaction temperature to train temporary shapes and the recovery of original shapes after a thermal trigger was monitored using a high-resolution camera. Long-term self-recovery (non-triggered) was also studied by observing the parts after temporary shape has been trained, as the try to regain their original shape over several days of slow recovery. The recovery of bending angles was quantitatively recorded from the images taken during the shape recovery process. The recovery due to thermal triggers was monitored under a high resolution microscope by reheating with hot water at 90°C. Experiments of long-term self-recovery at room temperature included monitoring of several parts by taking periodic images of the specimens using a resolution camera. The effect of inclusion of fillers on the shape recovery characteristics was also investigated. Silicon Carbide (SiC) with different weight fractions were mixed into PLA powders. Continuous filaments were extruded using a single screw extruder. The recovery time of thermal activation recovery was then characterized to determine the effect of addition of the fillers. The effect of material-mix ratio, initial printed orientation, filler type on the recovery ratio and recovery time are described in this paper.
Proceedings Papers
Proc. ASME. IMECE2016, Volume 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis, V009T17A004, November 11–17, 2016
Paper No: IMECE2016-68208
Abstract
Nondestructive Evaluation (NDE) is an effective way for determining material properties. More specifically, ultrasonic waves along with visual measurements from a microscope can be used to systematically determine the elastic modulus of single ply composites that are subject to an altered manufacturing process. In this approach, the magnitudes of specific ultrasonic wave velocities are applied through Chirstoffel’s equations to determine the necessary five elastic constants that describe the elastic modulus of transversely isotropic composites. On the other hand, fiber misalignment measurements are taken through via digital microscopy to satisfy a statistical approach for the determination of the same elastic modulus. The Paper Physics Approach (PPA) and Laminate Analogy Approach (LAA) are utilized to predict the elastic modulus of unidirectional carbon fiber samples. A two parameter Weibull distribution is expected to satisfy the probability density of the fiber length and fiber orientation variation which will then be implemented into the Halpin-Tsai equations that will determine the elastic modulus. In terms of results, the mean fiber length from the visual approach is approximately 250 μm and the mean fiber misalignment is just over 3°. The elastic moduli range from 7 GPa to 9 GPa depending on the approach. Destructive mechanical testing led to an average elastic modulus value of 8.49 GPa.
Proceedings Papers
Proc. ASME. IMECE2015, Volume 2A: Advanced Manufacturing, V02AT02A037, November 13–19, 2015
Paper No: IMECE2015-50224
Abstract
Stainless steel is the most widely used alloys of steel. The reputed variety of stainless steel having customised material properties as per the design requirements is Duplex Stainless Steel and Austenitic Stainless Steel. The Austenite Stainless Steel alloy has been developed further to be Super Austenitic Stainless Steel (SASS) by increasing the percentage of the alloying elements to form the half or more than the half of the material composition. SASS (Grade-AL-6XN) is an alloy steel containing high percentages of nickel (24%), molybdenum (6%) and chromium (21%). The chemical elements offer high degrees of corrosion resistance, toughness and stability in a large range of hostile environments like petroleum, marine and food processing industries. SASS is often used as a commercially viable substitute to high cost non-ferrous or non-metallic metals. The ability to machine steel effectively and efficiently is of utmost importance in the current competitive market. This paper is an attempt to evaluate the machinability of SASS which has been a classified material so far with very limited research conducted on it. Understanding the machinability of this alloy would assist in the effective forming of this material by metal cutting. The novelty of research associated with this is paper is reasonable taking into consideration the unknowns involved in machining SASS. The experimental design consists of conducting eight milling trials at combination of two different feed rates, 0.1 and 0.15 mm/tooth; cutting speeds, 100 and 150 m/min; Depth of Cut (DoC), 2 and 3 mm and coolant on for all the trials. The cutting tool has two inserts and therefore has two cutting edges. The trial sample is mounted on a dynamometer (type 9257B) to measure the cutting forces during the trials. The cutting force data obtained is later analyzed using DynaWare supplied by Kistler. The machined sample is subjected to surface roughness (Ra) measurement using a 3D optical surface profilometer (Alicona Infinite Focus). A comprehensive metallography process consisting of mounting, polishing and etching was conducted on a before and after machined sample in order to make a comparative analysis of the microstructural changes due to machining. The microstructural images were capture using a digital microscope. The microhardness test were conducted on a Vickers scale (Hv) using a Vickers microhardness tester. Initial bulk hardness testing conducted on the material show that the alloy is having a hardness of 83.4 HRb. This study expects an increase in hardness mostly due to work hardening may be due to phase transformation. The results obtained from the cutting trials are analyzed in order to judge the machinability of the material. Some of the criteria used for machinability evaluation are cutting force analysis, surface texture analysis, metallographic analysis and microhardness analysis. The methodology followed in each aspect of the investigation is similar to and inspired by similar research conducted on other materials. However, the novelty of this research is the investigation of various aspects of machinability and drawing comparisons between each other while attempting to justify each result obtained to the microstructural changes observed which influence the behaviour of the alloy. Due to the limited scope of the paper, machinability criteria such as chip morphology, Metal Removal Rate (MRR) and tool wear are not included in this paper. All aspects are then compared and the optimum machining parameters are justified with a scope for future investigations.
Proceedings Papers
Proc. ASME. IMECE2015, Volume 7B: Fluids Engineering Systems and Technologies, V07BT09A004, November 13–19, 2015
Paper No: IMECE2015-50635
Abstract
A confocal Micro-Particle Image Velocimetry (C-μPIV) technique along with associated post image processing algorithms is established to quantify three dimensional distributions of nano-particle velocity and concentration at the micro-scale (pore-scale) in 2.5D porous media designed from a Boise rock sample. In addition, an in-situ, non-destructive method for measuring the geometry of the micro-model, including its depth, is described and demonstrated. The particle experiments use 900 nm fluorescence labeled polystyrene particles at a flow rate of 10 nLmin −1 and confocal laser scanning microscopy (CLSM), while in-situ geometry measurements use regular microscope along with Rhodamine dye and a depth-to-fluorescence-intensity calibration. Image post-processing techniques include elimination of background noise and signal from adsorbed nano-particle on the inner surfaces of the micro-model. In addition, a minimization of depth of focus technique demonstrates a capability of optically thin slice allowing us to measure depth wise velocity in 2.5D micro-model. The mean planar components of the particle velocity of the steady-state flow and particle concentration distributions were measured in three dimensions. Particle velocities range from 0.01 to 122 μm s −1 and concentrations from 2.18 × 10 3 to 1.79 × 10 4 particles mm −2 . Depth-wise results show that mean velocity closer to the top wall is comparatively higher than bottom walls, because of higher planar porosity and smooth pathway for the nano-particles closer to the top wall. The three dimensional micro-model geometry reconstructed from the fluorescence data can be used to conduct numerical simulations of the flow in the as-tested micro-model for future comparisons to experimental results after incorporating particle transport and particle-wall interaction models.
Proceedings Papers
Proc. ASME. IMECE2015, Volume 2B: Advanced Manufacturing, V02BT02A065, November 13–19, 2015
Paper No: IMECE2015-51672
Abstract
The purpose of this paper is to present the results of a study comparing an old technique for measuring low surface roughness with a new technique of data acquisition and processing that is potentially cheaper, quicker and more automated. It offers the promise of in-process quality monitoring of surface finish. Since the late 1800s, researchers have investigated the light scattering effects of surface asperities and have developed many interferometry techniques to quantify this phenomenon. Through the use of interferometry, the surface roughness of objects can be very accurately measured and compared. Unlike contact measurement such as profilometers, interferometry is nonintrusive and can take surface measurements at very wide ranges of scale. The drawbacks to this method are the high costs and complexity of data acquisition and analysis equipment. This study attempts to eliminate these drawbacks by developing a single built-in MATLAB function, to simplify data analysis, and a very economically priced digital microscope (less than $200), for data acquisition. This is done by comparing the results of various polishing compounds on the basis of the polished surface results obtained from MATLAB’s IMHIST function to the results of stylus profilometry methods. The study with the MATLAB method is also to be compared to 3D microscopy with a Keyence microscope. With surface roughness being a key component in many manufacturing and tribology applications, the apparent need for accurate, reliable and economical measuring systems is prevalent. However, interferometry is not a cheap or simple process. “Over the last few years, advances in image processing techniques have provided a basis for developing image-based surface roughness measuring techniques” [1]. One popular image processing technique is through the use of MATLAB’s Image Processing Toolbox. This includes an array of functions that can be used to quantify and compare textures of a surface. Some of these include standard deviation, entropy, and histograms of images for further analysis. “These statistics can characterize the texture of an image because they provide information about the local variability of the intensity values of pixels in an image. For example, in areas with smooth texture, the range of values in the neighborhood around a pixel will be a small value; in areas of rough texture, the range will be larger. Similarly, calculating the standard deviation of pixels in a neighborhood can indicate the degree of variability of pixel values in that region” [2]. By combining the practices of interferometry with the processing techniques of MATLAB, this fairly new method of roughness measurement proved itself as a very viable and inexpensive technique. This technique should prove to be a very viable means of interferometry at an affordable cost.