Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-20 of 779
Fracture (Materials)
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. IMECE2020, Volume 12: Mechanics of Solids, Structures, and Fluids, V012T12A009, November 16–19, 2020
Paper No: IMECE2020-23456
Abstract
This study investigated the crack growth behavior of porous polymer membranes, experimentally and numerically, in order to clarify the criterion of crack growth. A notch was introduced into the membrane as an initial crack (pre-crack) and a uniaxial loading was applied for the stable crack propagation. During the test, crack propagation behavior was observed using a CCD camera and Digital Image Correlation (DIC) method. The strain around the pre-crack tip at the onset of crack propagation was measured experimentally using DIC method. It was clarified that large-scale yielding developed before the onset of crack growth. The stable crack propagation was observed for all tensile tests. In parallel, a homogenized model that mimicked porous polymer membrane was created using finite element method (FEM) in order to investigate stress/strain distribution around the crack tip. This study employed the yield criterion proposed by Deshpande and Fleck. The computed strain distribution was compared with that of experiment, showing a good agreement each other. By using strain distribution from DIC method and FEM computation, J-integral value was calculated to investigate the criterion of crack growth. Regardless of the initial crack length, it is found that the J-integral value at the initiation of crack growth becomes constant for all tests. It is concluded that we successfully determined the criterion of crack propagation of porous polymer membrane. Therefore, our study using DIC experiment and FEM computation is useful to clarify the crack growth behavior of porous polymer membrane and determines the criterion of crack propagation.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 12: Mechanics of Solids, Structures, and Fluids, V012T12A018, November 16–19, 2020
Paper No: IMECE2020-23537
Abstract
Carbon fiber reinforced polymers (CFRP) are crucial for many industries due to their superior material properties. CFRPs have strength and toughness that are comparable to metals but with the advantage of possessing lighter weight and higher corrosion resistance. Typically, structural parts are joined by bolts and rivets resulting in difficulties keeping the integrity of these joints. In CFRP joints, screw holes are stress concentration sites that may develop cracks, splits and delamination. Alternatively, adhesive bonding can be used as a joining method for CFRP substrates to overcome the disadvantages bolts and rivets. Structural parts are usually subjected to cyclic loading. Therefore, fatigue is considered as a major design tool for these parts. Finite element analysis is a powerful tool for modeling damage in components. This paper aims to simulate fatigue crack growth in adhesively bonded carbon fiber reinforced polymer (CFRP) composite substrates using a double cantilever beam (DCB) specimen. ANSYS XFEM is utilized to simulate the crack path using the enrichment technique to assign elements to the crack path. The model calculates the stress intensity factor (SIF) based on the domain integral over the contour around the crack tip. Then, it is converted at each sub-step to the energy released rate (ERR) which includes a correction factor estimated from the cohesive zone model (CZM). The model is idealized as a 2D geometry with the nodes at the unloaded edge and the corner being constrained in the longitudinal and the tangential directions, respectively. Displacement was applied at the other end of the specimen separating the two beams in a mode I condition. Finally, the number of cycles is estimated from Paris law. To verify the proposed model, fatigue crack growth (FCG) tests were performed on an 8-layer unidirectional CFRP laminates (HexPly T700/M21) fabricated into DCB specimens. The substrates is joined by an aerospace grade adhesive (Araldite 420). The estimated energy release rate (ERR) using the developed finite element model is within 90% or more of that determined experimentally.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 14: Safety Engineering, Risk, and Reliability Analysis, V014T14A028, November 16–19, 2020
Paper No: IMECE2020-24452
Abstract
The methodology referred as probabilistic surface damage tolerance for aeroengine rotors is used to evaluate the risk of fractures induced by low-cycle failure problems, and fracture mechanical models are usually used to carry out the analysis, in which stress intensity factors (SIFs) need to be calculated. Weight function method (WFM) can help improve the probabilistic surface damage tolerance methodology. The WFM offers remarkable computational efficiency in calculating SIFs for cracks in aeroengine rotors with complex stress gradients that are mainly induced by a local stress concentration or multiple loads, including centrifugal, thermal, and residual stresses. In this case, the universal weight functions (mode I) for surface cracks in three-dimensional finite plates, including flat plates and plates with holes, are presented. The critical step of WFM is to obtain certain coefficients in the universal weight function. Response surface method (RSM) can effectively derive the coefficients determined by multiple geometric parameters, including the length and thickness of a flat plate and the length, thickness, radius of a plate with a hole. Errors between the WFM results and the finite element results are less than 5 MPa m within the application scope. Furthermore, a surface damage tolerance analysis of the hole features in the aeroengine rotors based on the abovementioned two types of WFM is conducted. The selection of the weight function influences the SIF results, and the probability of failure (POF) calculated by the applied weight function of the plate with a hole is 2.02% higher than that of the flat plate. The relevant difference, which is determined by the fracture threshold crack size, has a negative relationship with the magnitude of stress distributed on the crack surface.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 12: Mechanics of Solids, Structures, and Fluids, V012T12A028, November 16–19, 2020
Paper No: IMECE2020-23624
Abstract
The fracture properties of various grain boundaries in graphene are investigated using the cohesive zone method (CZM). Molecular dynamics simulations are conducted using REBO2+S potential in order to develop a cohesive zone model for graphene grain boundaries using a double cantilever bicrystalline graphene sheet. The cohesive zone model is used to investigate the traction–separation law to understand the separation-work and strength of grain boundaries.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 14: Safety Engineering, Risk, and Reliability Analysis, V014T14A037, November 16–19, 2020
Paper No: IMECE2020-23285
Abstract
Fitness-for-Service codes require whether non-aligned cracks be treated as coalesced or separate multiple cracks. The authors previously reported on the effect between an corner and an embedded parallel crack in 2-D and in 3-D scenarios subject to tensile loading. Since realistic crack configurations detected using non-destructive methods are generally 3-D in nature, the study of 3-D effect under different loading types is deemed necessary in order to obtain more practical guidance. In this study, we investigate stress intensity factors (SIFs) along the crack front of a quarter-circle corner crack when affected by a semi-elliptic surface crack in a semi-infinite large solid under pure bending. While keeping constant the geometry of the quarter-circle corner crack, the SIFs along its front are studied for a wide range of geometrical configurations of the surface crack by varying its ellipticity b 1 /a 1 = 0.1∼1; the relative crack size of the two parallel cracks a 1 /a 2 = 1/3∼2; the normalized vertical gap, H/ a2 = 0.4∼2; and the normalized horizontal gap, S/ a2 = −0.5∼2 between the two cracks on using linear elastic fracture mechanics (LEFM). The results from this study are collectively significant to the understanding of the correlation between the criteria and standards in Fitness-for-Service community and the consequence of their usage in engineering practice.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 12: Mechanics of Solids, Structures, and Fluids, V012T12A046, November 16–19, 2020
Paper No: IMECE2020-23879
Abstract
Lugs and pins, rivets, bolts are the most essential joints used in structural components apart from the welds. These elements experience dynamic loading during their life, leading to failure by fatigue. Many studies have been performed to estimate stress intensity factors (SIFs) and fatigue life for these joints. Although the effect of geometric configuration, loading methodology and interference levels on SIFs have been studied independently, very few have studies the combined effect; this may be either due to non-availability of closed form solutions or difficulty in experimentation. The current study uses Finite Element Analysis to evaluate the SIF for cracks emanating from a circular hole in a finite width rectangular plate under different loading conditions such as open hole load, bearing load, pin load (with and without interference) and the effect of introducing a bush. This study brings out the crack lengths beyond which the type of loading is not significant on the stress intensity factor, as well as interference levels beyond which there is no beneficial impact on the SIF and hence the life of component.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 12: Mechanics of Solids, Structures, and Fluids, V012T12A060, November 16–19, 2020
Paper No: IMECE2020-23355
Abstract
Many engineering components fail in the presence of service loads like thermal residual stresses and thermomechanical loading. An accurate evaluation of the fracture parameter ( J -integral) at the crack tip is essential for the safe design of structures. In this work, a novel computational method called the Extended Finite Element Method (XFEM) has been implemented to analyze the plastically graded material (PGM) subjected to thermal and thermo-mechanical loading. For crack discontinuity modeling, a partition of unity enrichment concept can be employed with additional mathematical functions like Heaviside and branch enrichment for crack discontinuity and stress field gradient, respectively. The modeling of the stressstrain relationship of material has been done using the Ramberg-Osgood material model. The isotropic hardening and Von-Mises yield criteria have been considered to check the plasticity condition. The variation in plasticity properties for PGM has been modeled by exponential law. Further, the nonlinear discrete equation has been numerically solved using a Newton-Rhapson iterative scheme.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 12: Mechanics of Solids, Structures, and Fluids, V012T12A053, November 16–19, 2020
Paper No: IMECE2020-23635
Abstract
The authors investigate the effect of carbon nanotubes (CNT) on the microstructure, nanomechanical properties, and fracture performance of three-phase polymer matrix composites (PMC). Two types of carbon fiber (CF)-Epoxy-CNT composites with different nanofiller distribution were studied at the nanoscale with PeakForce Quantitative Nanomechanical mapping technique (PFQNM) and macroscale with mode I fracture testing to clarify the relationship between nanofiller interphase properties and mode I fracture performance. CNT agglomerates were identified on the polished sample surface in well-dispersed and agglomerated form. AFM data showed the inhomogeneity of nanoscale local mechanical properties in CNT-rich zones. Variation in material properties is attributed to voids, CNT alignment, and changes in density of the matrix and CNT nanoparticles. A higher resolution AFM scanner and Field Emission Scanning Electron Microscopy are necessary to observe nano-scale interphase mechanical properties and CNT orientation, respectively. Mode I interlaminar fracture testing demonstrated the effectiveness of CNT nanoparticles in preventing crack-jump and fiber-bridging effects. G IC for FCNT is 0.345±0.06 N-mm/mm 2 at crack initiation, compared to 0.28±0.03 N-mm/mm 2 for the plain epoxy reference sample. CNT nanoparticles increase the energy required for interlaminar fracture by promoting crack deflection and strengthening the interphase between CF and epoxy matrix through increased interfacial surface area.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 12: Mechanics of Solids, Structures, and Fluids, V012T12A042, November 16–19, 2020
Paper No: IMECE2020-23777
Abstract
Direct bonding of metal-resin plays a critical role in jointing of dissimilar materials and the adhesion strength is known to be dependent on strain rate (loading rate) due to the strain rate sensitivity of polymeric resin. This study evaluated adhesion strength and adhesion durability against repetitive loading for the interface between aluminum alloy and epoxy resin. For experiment, a pulsed YAG laser was used to generate strong elastic waves, resulting in interfacial fracture. This method is called Laser Shock Adhesion Test (LaSAT), which enables us to evaluate impact strength of interfacial fracture. This study prepared two types of specimens with different curing temperature (20°C and 100°C). It is found that the specimen with higher temperature curing shows larger adhesion strength. Subsequently, repetitive LaSAT experiments (cyclic loading tests) were conducted to evaluate adhesion durability. This reveals that adhesion strength showed cyclic fatigue characteristics and higher curing temperature improves fatigue strength. To elucidate this mechanism at molecular level, molecular dynamics (MD) simulation was conducted for the interfacial material with epoxy resin. This study created all-atomistic model of Al 2 O 3 /epoxy resin interface, and repetitive tensile deformation was applied until delamination. It is found that the number of loading cycles to delamination was increased when the applied tensile stress was lower. It is also found that the 400K curing model showed larger adhesion strength than that of the 300K curing model. This trend is very similar with the results of LaSAT experiments. Our comprehensive study with LaSAT experiments and MD simulations evaluates adhesion strength of Al/epoxy interface and reveals its fracture mechanism.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 12: Mechanics of Solids, Structures, and Fluids, V012T12A063, November 16–19, 2020
Paper No: IMECE2020-24094
Abstract
Self-healing is the ability of a material to repair damages automatically. Approaches to self-healing are separated into two major categories, those are: 1) autonomous healing methods that depend on intrinsic mechanisms, and 2) assisted healing methods that need an external intervention. Recently, computational methods have gained a wide application to study self-healing in metals using molecular dynamics (MD) and finite element (FE) methods. These methods can be used to demonstrate and optimize different metallic alloys potential to self-heal, and to further tailor these metallic structures toward improving their mechanical and fracture properties through self-healing. Computational studies of self-healing phenomenon in metals have been small in number and scope till recently. Therefore, the current paper starts with a general introduction of different mechanisms of intrinsic self-healing in metallic structures. The paper highlights previous studies using different experimental and computational approaches to explore self-healing in metallic systems, while focusing on Iron/Steel alloys. Furthermore, the paper present authors work to study self-healing and its impact on mechanical properties of Iron. Simulations are carried on bi-crystalline iron sample to investigate the effect of alloying elements diffusion on the fracture / healing properties of iron alloys and their impact on its mechanical properties. Then the effect of the alloying elements diffusion on healing is studied upon stress application after annealing. Different samples been compared to healthy samples and cracked samples without self-healing to demonstrate the effectiveness of self-healing in Iron alloys.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 8: Energy, V008T08A045, November 16–19, 2020
Paper No: IMECE2020-23920
Abstract
Fuel cell system manufacturing process is not a defect-free process, therefore, the impact of typical defects in the electrodes (i.e. Gas Diffusion Layer (GDL)) surface has to be taken into consideration when the fuel cell system is being designed. To assess the impact of the defect on the performance, two approaches were taken into consideration. Initially, the fuel cell system was simulated using a unidimensional (1D) dynamic model which took into consideration mass transfer, heat transfer, and electrochemical phenomena. The second approach was experimental, using a 5 sq.cm PEM fuel cell, the impact of the GDL porosity on the fuel cell system was studied. Also, the system response under different load changes was investigated. After that, experimental results are presented to give a better insight into the phenomena analyzed, mainly on the dynamic system response. Cracks and catalyst clusters were the main defects analyzed, both of them were observed in new membranes assemblies. To control the defects, new membranes assemblies were tested, and after that, defects were induced using Nafion solution and catalyst powder to emulate the presence of catalyst clusters. For the cracks, some fibers in the GDL cloth were cut to emulate the defect. Membranes now with defects were tested again to compare its performance and detect any performance loss due to the physical changes in the electrodes. Results indicate a strong correlation between the porosity and the supply air pressure and the system time constants. Also, the impact of the defects was evidenced in the dynamic system response, after step changes in the operating conditions.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 5: Biomedical and Biotechnology, V005T05A049, November 16–19, 2020
Paper No: IMECE2020-23828
Abstract
The human thoracolumbar spinal column sustains axial loading under physiological and traumatic loading situations. Clinical studies have focused on the former scenario, and the investigation of low back pain issues and spinal stabilization using artificial devices such as arthroplasty are examples. Investigative studies have largely used quasi-static and vibration loading on the spine segment(s) and spinal columns. The traumatic loading scenario is relatively less researched, and it is a dynamic event. Injuries under this scenario occur in sports, automotive, and combat environments. Impact vectors include flexion-extension modes in automotive crash events. Vertical or caudal to cephalad oriented impacts have been identified in both automotive and military scenarios. Frontal impacts to restrained occupants in the automotive and underbody blast impacts from improvised explosive device in combat situations are examples of the vertical loading vector. Although some studies have been conducted using whole body human cadavers and isolated spinal columns, determinations have not been made of the injury risks and stress and strain responses for a variety of accelerative pulses. The aims of the present investigation were to delineate the internal biomechanics of the spinal column under this impact vector and assess the probability of injury. Male and female whole-body human finite element models were used in the study. The occupants were restrained and positioned on the seat, and caudo-cephalad impacts were applied to the base. Different acceleration-time profiles (pulse durations ranging from 50 to 200 ms and peak accelerations varying from 11 g to 46 g) were used as inputs in both male and female models. The resulting stress-strain profiles in the cortical and cancellous bones were evaluated at different vertebral levels. Using the peak transmitted forces at the thoracolumbar disc level as the response variable, the probability of injury for the male spine was obtained from experimental risk curves for the various accelerative pulses. Results showed that the shorter pulse durations and rise times impart greater loading on the thoracolumbar spine. The analysis of von Mises stress and strain distributions showed that the compression-related fractures of vertebrae are multifaceted with contributions from both the cortical and cancellous bony components of the body. Profiles are provided in the body of the paper for different spinal levels. The intervertebral disc may be involved in the fracture mechanism, because it acts as a medium of load transfer between adjacent vertebrae. Injury risks for the shortest pulse was sixty-three percent, and for the widest pulse it was close to zero, and injury probabilities for other pulses are given. The present computational modeling study provides insights into the mechanisms of the internal load transfer and describe the injury risk levels from caudal to cephalad impacts.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 7A: Dynamics, Vibration, and Control, V07AT07A046, November 16–19, 2020
Paper No: IMECE2020-23773
Abstract
High speed rotating machineries usually operate under severe conditions and enormous loadings and thus, are susceptible to several problems. One such problem that has caught the attention in recent decades is known as High Cycle Fatigue. More than 60 percent of rotating machinery failures has been attributed to this High cycle Fatigue. Along with High Cycle Fatigue, Vibration, an inherent phenomenon in machineries, also share its part in failure of rotating machineries. Rotating machinery components suffer from high amplitude vibrations when they pass through resonance. Stresses are developed as a result of these vibrations and fatigue in mechanical structures, providing a conducive environment for the development of cracks at Surface. When these surface cracks reach critical size, crack nucleation starts, which ultimately leads to catastrophic failures. So, in order to avoid the disastrous consequences, damping is needed. Damping keeps material’s integrity in case of impact forces, stresses due to thermal shocks in turbo machinery and earth quakes in huge structures. Thin layer of magneto elastic coating can be applied on substrate surface that acts as first line of defense. Large number of coating Processes are available around the globe. The optimized combination of coating material, substrate material and coating technique according to specific application is necessary. These coatings have the capability to combat the phenomenon of oxidation, wear and fatigue acting as a barrier between substrate and hostile environments. Further, they enhance the damping characteristics, and thus allows the highspeed rotating machinery to reach its operational speed without any failure at resonance. In this way, they not only enhance the performance of components in aggressive environments, but also improve the life cycle, saving assets of millions of dollars’ worth. This research is an endeavor to experimentally investigate effect of magneto mechanical coating on damping of AISI 321 Stainless steel. AISI 321 was selected as base material because of its wide applications in engine components of gas turbines, heat exchangers and in different chemical industries. Two types of Air plasma sprayed magneto-mechanical powder (NiAl & CoNiCrAlY) were coated on base material and thickness was maintained up to 250μm in both the cases. Experiments were designed and performed on cantilever beam specimens for dynamic response measurement. Dynamic response of the system was measured to investigate the modal parameters of natural frequencies, damping ratio and time of vibration decay. For damping ratio, vibration analyzer mode was adjusted in time domain and beam was excited by using a hammer. Vibration analyzer showed the vibration decay as a function of time. Logarithmic decrement method was used to calculate the damping ratio in both cases. Dynamic response of all the three cases (NiAl coating, CoNiCrAlY and uncoated AISI321) were compared. Results were very reassuring and showed a significant improvement in damping characteristics.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 7B: Dynamics, Vibration, and Control, V07BT07A004, November 16–19, 2020
Paper No: IMECE2020-24006
Abstract
Gear mechanisms are one of the most significant components of the power transmission systems. Due to increasing emphasis on the high-speed, longer working life, high torques, etc. cracks may be observed on the gear surface. Recently, Machine Learning (ML) algorithms have started to be used frequently in fault diagnosis with developing technology. The aim of this study is to determine the gear root crack and its degree with vibration-based diagnostics approach using ML algorithms. To perform early crack detection, the single tooth stiffness and the mesh stiffness calculated via ANSYS for both healthy and faulty (25-50-75-100%) teeth. The calculated data transferred to the 6-DOF dynamic model of a one-stage gearbox, and vibration responses was collected. The data gathered for healthy and faulty cases were evaluated for the feature extraction with five statistical indicators. Besides, white Gaussian noise was added to the data obtained from the 6-DOF model, and it was aimed at early fault diagnosis and condition monitoring with ML algorithms. In this study, the gear root crack and its degree analyzed for both healthy and four different crack sizes (25%-50%-75%-100%) for the gear crack detection. Thereby, a method was presented for early fault diagnosis without the need for a big experimental dataset. The proposed vibration-based approach can eliminate the high test rig construction costs and can potentially be used for the evaluation of different working conditions and gear design parameters. Therefore, catastrophic failures can be prevented, and maintenance costs can be optimized by early crack detection.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 2A: Advanced Manufacturing, V02AT02A020, November 16–19, 2020
Paper No: IMECE2020-23155
Abstract
A sudden increase in the usage of automotive vehicles results in sudden increases in the fuel consumption which results in an increase in air pollution. To cope up with this challenge federal government is implying the stricter environmental regulation to decrease air pollution. To save from the environmental regulation penalty vehicle industry is researching innovation which would reduce vehicle weight and decrease the fuel consumption. Thus, the innovation related to light-weighting is not only an option anymore but became a mandatory necessity to decrease fuel consumption. To achieve this target, the industry has been looking at fabricating components from high strength to ultra-high strength steels or lightweight materials. With the usage of advanced high strength steels, the lightweight was achieved by reducing a gage thickness without compromising the strength aspect. However due to their high strength property often challenges occurred are higher machine tonnage requirement, sudden fracture, geometric defect, etc. The geometric defect comes from the elastic recovery of a material, which is also known as a springback. Springback is commonly known as a manufacturing defect due to the geometric error in the part, which would not be able to fit in the assembly without secondary operation or compensation in the forming process. It is learned that the springback of the material increases with an increase in the material strength and/or decrease in material thickness. In advanced high strength steels, higher strength and lower gage thickness options make the part prone to higher springback. Due to these many challenges, other research route involved is composite material, where light materials can be used with high strength material to reduce the overall vehicle weight. This generally includes, tailor welded blanks, multilayer material, mechanical joining of dissimilar material, etc. Due to substantial use of dissimilar materials, these parts are also called as hybrid components. It was noted that the part weight decreases with the use of hybrid components without compromising the integrity and safety. In the previously published paper in IMECE2017 the study was focused on equal layer thickness of metal and composite in bilayer material. In this paper, a springback analysis was performed considering bilayer metal by varying the thickness of the metal as well as the composite. For this two dissimilar materials aluminum and composite was considered as bonded material. This material was then bent on a free bend die. The bilayer springback was compared with different layer thickness of metal and composite and in different condition like aluminum layer on punch side and then on die side. These results were then compared with the baseline springback of only aluminum thin and thick layer.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 2A: Advanced Manufacturing, V02AT02A036, November 16–19, 2020
Paper No: IMECE2020-24646
Abstract
Smoothed Particle Hydrodynamics (SPH), a particle-based, meshless method originally developed for modeling astrophysical problems, is being increasingly used for modeling fluid mechanics and solid mechanics problems. Due to its advantages over grid-based methods in the handling of large deformations and crack formation, the method is increasingly being applied to model material removal processes. However, SPH method is computationally expensive. One way to reduce the computational time is to partition the domain into two parts where, the SPH method is used in one segment undergoing large deformations and material separation and in the second segment, the conventional finite element (FE) mesh is used. In this work, the accuracy of this SPH-FEM approach is investigated in the context of orthogonal cutting. The high deformation zone (where chips form and curl) is meshed with the SPH method, while the rest of the workpiece is modeled using the FE method. At the interface, SPH particles are coupled with FE mesh for smooth transfer of stress and displacement. The boundary conditions are applied to tool and FE zone of the workpiece. For comparison purposes, a fully-SPH model (workpiece fully discretized by SPH) is also developed. This is followed by a comparison of the results from the coupled SPH-FE model with the SPH model. A comparison of the chip profile, the cutting force, the von Mises stress and the damage parameter show that the coupled SPH-FE model reproduces the SPH model results accurately. However, the SPH-FE model takes almost 40% less time to run, a significant gain over the SPH model. Similar reduction in computation time is observed for in a micro-cutting application (depth of cut of 300 nm). Based on these results, it is concluded that coupling SPH with FEM in machining models decreases simulation time significantly while still producing accurate results. This observation suggests that three-dimensional machining problems can be modeled using the combined SPH-FEM approach without sacrificing accuracies.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 2A: Advanced Manufacturing, V02AT02A055, November 16–19, 2020
Paper No: IMECE2020-24589
Abstract
The powder-bed fusion (PBF) process is capable of producing near-fully dense metallic parts; however, various defects — particularly thermal abnormalities — can still be observed during the process. Some of these thermal defects — cracks, distortion, delamination of layers, and microporosity — cannot be removed by post-processing operations. The majority of these abnormalities are the result of residual stress, heat accumulation, lack of inter-track /inter-layer bonding, lack of powder fusion, or a combination of these factors. Modifying the scanning strategy (the topology of scanning tracks) can efficiently mitigate these abnormalities by adjusting the process parameters and adopting proper scanning patterns. The implementation of different scanning strategies significantly changes the ultimate quality of printed parts and manufacturing process lead time. Choosing a proper scanning strategy minimizes the residual stress and internal porosity, generates homogeneous microstructure, and avoids heat accumulation throughout the part during the printing process. In this work, we conducted a critical review of different scanning strategies, their pros and cons, limitations, and influence on the resulting properties of fabricated parts. Furthermore, we report the latest efforts for improvement of the current scanning strategies and introduce the-state-of-the-art strategies in the multi-laser PBF (ML-PBF) process. The insights provided here can assist scholars in evaluating existing scanning strategies and scanning patterns, and in identifying ways both to overcome scanning limitations and to modify them. On the other hand, it can assist manufacturers in selecting the best scanning strategies for their products based on their designs, demands, and resources.
Proceedings Papers
Amirkoushyar Ziabari, Singanallur Venkatakrishnan, Michael Kirka, Paul Brackman, Ryan Dehoff, Philip Bingham, Vincent Paquit
Proc. ASME. IMECE2020, Volume 2B: Advanced Manufacturing, V02BT02A043, November 16–19, 2020
Paper No: IMECE2020-23766
Abstract
Nondestructive evaluation (NDE) of additively manufactured (AM) parts is important for understanding the impacts of various process parameters and qualifying the built part. X-ray computed tomography (XCT) has played a critical role in rapid NDE and characterization of AM parts. However, XCT of metal AM parts can be challenging because of artifacts produced by standard reconstruction algorithms as a result of a confounding effect called “beam hardening.” Beam hardening artifacts complicate the analysis of XCT images and adversely impact the process of detecting defects, such as pores and cracks, which is key to ensuring the quality of the parts being printed. In this work, we propose a novel framework based on using available computer-aided design (CAD) models for parts to be manufactured, accurate XCT simulations, and a deep-neural network to produce high-quality XCT reconstructions from data that are affected by noise and beam hardening. Using extensive experiments with simulated data sets, we demonstrate that our method can significantly improve the reconstruction quality, thereby enabling better detection of defects compared with the state of the art. We also present promising preliminary results of applying the deep networks trained using CAD models to experimental data obtained from XCT of an AM jet-engine turbine blade.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 2B: Advanced Manufacturing, V02BT02A038, November 16–19, 2020
Paper No: IMECE2020-23319
Abstract
Cast metal parts are extensively found in many engineering products such as pump casing and engines. Thermal effects exhibited during metal casting processes, such as solidification can generate defects in the cast components. Effective nondestructive testing (NDT) for detection and sizing of defects in cast parts prevents extra cost and time associated with repair and maintenance. Surface-breaking cracks and porosity are among the common types of defects in large cast components. There are several limitations in using conventional NDT methods for as built cast parts due to surface conditions, coarse-grain structure, and characteristics of potential defects. Ultrasonic adaptive imaging based on the Phased Array Ultrasonic Testing (PAUT) technology is proposed for coarse-grain heavy-walled cast material inspection. The capability of aperture focusing in PAUT provides the opportunity for better imaging results. A comprehensive understanding about the ultrasonic beam focusing and the selection of an appropriate transducer and wedges is necessary for successful defect characterization. Cast aluminum and iron samples having on-purpose made defects were successfully inspected using the PAUT. Unlike conventional techniques, the results indicated that the PAUT is a promising method for inspecting as-built cast parts with rough surface finish conditions. The proposed method helps to decrease the inspection time, machining requirements, and preparation costs. Moreover, the enhanced defect sizing approach provides useful information for repair and maintenance decision making such as amount of material grinding and post-welding procedure.
Proceedings Papers
Proc. ASME. IMECE2020, Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications, V003T03A004, November 16–19, 2020
Paper No: IMECE2020-23751
Abstract
Results of online acoustic emission (AE) monitoring during fatigue crack growth rate (FCGR) experiments on a stainless steel SS 316 LN are presented in this paper. Two specimen geometries — viz., standard compact tension (C(T)) specimens as well as side-grooved C(T) specimens were considered for experiments at ambient temperature and at 600°C (873K). There is a good correspondence between crack length increment and the increase in AE cumulative count and cumulative energy during the experiments. The side grove introduced on the thickness direction of the test specimen constrains the plastic zone ahead of the crack tip, thereby enforcing plane strain conditions at the crack. Reduced AE activity at initial stages of crack growth was observed for side grooved samples. The transition to Stage-II crack growth was observed using acoustic emission (AE) technique which otherwise was not visible from the fatigue crack growth plot. The work further attempts to correlate the AE parameters obtained during elevated temperature (873K) fatigue crack growth in stainless steel. For the purpose of acquiring AE signals outside the heated zone, a waveguide was used to transmit the acoustic waves from the specimen at high temperature. A correlation between crack advance and AE parameters was obtained from the elevated temperature tests.