Abstract

Loop heat pipes currently are being used in the thermal control systems for satellites. To expand possible loop heat pipe applications, information regarding response to transient heat inputs is required. In this investigation, two loop heat pipes with dual compensation chambers were subjected to heat inputs of varying magnitude, frequency, and waveform (square and sinusoidal). The performance of each loop heat pipe under these conditions was evaluated in different gravitational orientations. The upper and lower limits of heat transport also were assessed. A principle finding was that cyclic heat loads tended to aid startup of the loop heat pipes at the low power inputs.

This content is only available via PDF.
You do not currently have access to this content.