Abstract

A multiblock Favre-Averaged Navier-Stokes (FANS) method has been developed in conjunction with a chimera domain decomposition technique for investigation of flat surface, discrete-hole film cooling performance. The finite-analytic method solves the FANS equations in conjunction with a near-wall second-order Reynolds stress (second-moment) closure model and a two-layer k-ε model. Comparisons of flow fields and turbulence quantities with experimental data clearly demonstrate the capability of the near-wall second-moment closure model for accurate resolution of the complex flow interaction bewteen the coolant jet and the mainstream. The near-wall second-moment anisotropic model provides better agreement in adiabatic film effectiveness prediction than the two-layer k-ε model.

This content is only available via PDF.
You do not currently have access to this content.