Abstract

The prediction and optimization of cutting forces in the finishing machining of 3D plane surfaces using ball-end milling are presented in this paper. The cutting force model is developed based on the mechanistic modeling approach. This improved model is able to accurately predict the cutting forces for non-horizontal and cross-feed cutter movements typical in 3D finishing ball-end milling. Optimization of the cutting forces is used to determine both the tool path and the maximum feed rate in 3D plane surface finishing machining. The objective is to achieve highest machining efficiency and to ensure product quality. Experimental results have shown that the cutting force model gives excellent predictions of cutting forces in 3D finishing ball-end milling. The feasibility of the integrated process planning method has been demonstrated through the establishment of optimized process plans for the finishing machining of 3D plane surfaces.

This content is only available via PDF.
You do not currently have access to this content.