Abstract

Articular cartilage is a highly nonhomogeneous, anisotropic and multiphase biomaterial consisting of mainly collagen fibrils, proteoglycans and water. Noncalcified cartilage is morphologically divided into three zones along the depth, i.e. superficial, transitional and radial zones. The thickness, density and alignment of collagen fibrils vary from the superficial zone, where fibrils are oriented parallel to the articular surface, to the radial zone where fibrils are perpendicular to the boundary between bone, and cartilage. The concentration of proteoglycans increases with the depth from the cartilage surface. These regional differences have significant implications to the mechanical function of joints, which is to be explored theoretically in the present work by considering inhomogeneity along the cartilage depth. A nonlinear fibril reinforced poroelastic model is employed as per Li et al. (1999) in which the collagen fibrils were modeled as a distinct constituent whose tensile stiffness was taken to be very high and be strain dependent but whose compressive stiffness was neglected.

This content is only available via PDF.
You do not currently have access to this content.