It is believed that bone cells can sense mechanical loading and alter bone external shape and internal structure to efficiently support the load bearing demands placed upon it. However, the mechanism by which bone cells sense and respond to their mechanical environment is still poorly understood. In particular, the load-induced signals to which bone cells respond, e.g. fluid flow, substrate deformation, electrokinetic effects etc., are unclear. Furthermore, there are few studies focused on the effects of physiological strain (strain < 0.5%, Burr, 1996; Owan, 1997) on bone cells. The goal of this study was to investigate cytosolic Ca2+ mobilization (a very early signaling event) in response to different substrate strains (physiological or supra-physiological strains), and to distinguish the effects of substrate strain from those of fluid flow by applying precisely controlled strain without induced fluid flow. In addition, we quantified the effect of physiologically relevant fluid flow (Cowin, 1995) and substrate stretch on the expression of mRNA for the bone matrix protein osteopontin (OPN). A computer controlled stretch device was employed to apply different substrate strains, 0.1%, 1%, 5% and 10%. A parallel plate flow chamber was used to test cell responses to steady and oscillating flows (20dyn/cm2, 1Hz). Our data demonstrate that physiological strain (< 0.5%) does not induce [Ca2+]i responses in primary rat osteoblastic cells (ROB) in vitro. However, there was a significant (p < 0.05) increase in the number of responding cells at supra-physiological strains of 1, 5, and 10% suggesting that the cells were capable of a biological response. Similar results for human fetal osteoblastic cells (hFOB 1.19) and osteocyte-like cells (ML0-Y4) were obtained. Furthermore, compared to physiological substrate deformation, physiological fluid flow induced greater [Ca2+]i responses for hFOB cells, and these [Ca2+]i responses were quantitatively similar to those obtained for 10% substrate strain. Moreover we found no change in osteopontin mRNA expression after 0.5% strain stretch. Conversely, physiological oscillating flow (20dyn/cm2, 1Hz) caused a significant increase in osteopontin mRNA. These data suggest that, relative to fluid flow, substrate deformation may play less of a role in bone cell mechanotransduction.

This content is only available via PDF.
You do not currently have access to this content.