Abstract

This paper describes an interactive neural network based system for specifying robotic tasks using virtual tools. This virtual environment allows an operator to reach into a live video scene and direct robots to use corresponding real tools to carry out complex metal finishing tasks. The virtual tool concept provides a human-machine interface that is robust to unanticipated developments and tunable to the specific requirements of a particular task. This interactive specification concept is applied to robotic deburring processes. A function is formulated to map the end-effector position of this robot to corresponding set of joint angles through a neural network learning process obtained through examples. The experimental result of such a system that has been implemented on the Mitsubishi RV-M1 robot shows the efficiency of the approach and its potential for use in virtual reality based interactive robotics.

This content is only available via PDF.
You do not currently have access to this content.