Active flutter suppression of a two dimensional wing section in subsonic flow is studied. The equations of motion of a typical section are presented in nondimensional form. A two degree of freedom system, with pitch and plunge dynamics, combined with a trailing-edge control surface is considered. Aerodynamic loads are expressed in time-domain using Roger’s approximation. Linear optimal control is used to design a full-state feedback regulator for flutter suppression. Constraints on actuator deflection and rate limit the flutter envelope expansion. Aeroservoelastic scaling is addressed and parameters required for maintaining similarity between a full-scale system and its model are identified. Results illustrate system behavior in compressible flow. Approximate relations comparing an actively controlled flap with a continuously deforming airfoil, using piezoelectric actuation, are obtained and used to compare the performance of these two systems.

This content is only available via PDF.
You do not currently have access to this content.