Abstract
The nonlinear interaction of the first two in-plane modes of a suspended cable with a moving fluid along the plane of the cable is studied. The governing equations of motion for two-mode interaction are derived based on a general continuum model. The interaction causes the modal differential equations of the cable to be non-self-adjoint. As the flow speed increases above a certain critical value, the cable experiences oscillatory motion similar to the flutter of aeroelastic structures. A coordinate transformation in terms of the transverse and stretching motions of the cable is introduced to reduce the two nonlinearly coupled differential equations into a linear ordinary differential equation governing the stretching motion, and a strongly nonlinear differential equation for the transverse motion. For small values of gravity-to-stiffness ratio the dynamics of the cable is examined using a two-time-scale approach. Numerical integration of the modal equations shows that the cable experiences stretching oscillations only when the flow speed exceeds a certain level. Above this level both stretching and transverse motions take place. The influences of system parameters such as gravity-to stiffness ratio, density ratio, and the fluid flow randomness on the response characteristics are also reported.