Abstract
The objective of the current investigation is to develop a simple, yet generalized, model which considers the two-dimensional extent of woven fabric, and to have an interface with nonlinear finite element codes. A micromechanical composite material model for woven fabric with nonlinear stress-strain relations is developed and implemented in ABAQUS for nonlinear finite element structural analysis. Within the model a representative volume cell is assumed. Using the iso-stress and iso-strain assumptions the constitutive equations are averaged along the thickness direction. The cell is then divided into many subcells and an averaging is performed again by assuming uniform stress distribution in each subcell to obtain the effective stress-strain relations of the subcell. The stresses and strains within the subcells are combined to yield the effective stresses and strains in the representative cell. Then this information is passed to the finite element code at each material point of the shell element. In this manner structural analysis of woven composites can be performed. Also, at each load increment global stresses and strains are communicated to the representative cell and subsequently distributed to each subcell. Once stresses and strains are associated to a subcell they can be distributed to each constituent of the subcell i.e. fill, warp, and resin. Consequently micro-failure criteria (MFC) can be defined for each constituents of a subcell and the proper stiffness degradation can be modeled if desired. This material model is suitable for implicit as well explicit finite element codes to deal with problems such as crashworthiness, impact, and failure analysis under static loads.