Abstract

An exergy analysis of a solid polymer fuel cell power system for transportation applications is reported. The analysis was completed by implementing the derived fundamental governing second law equations for the system into a fuel cell performance model developed previously. The model analyzes all components of the system including the fuel cell stack and the air compression, hydrogen supply, and cooling subsystems. From the analysis, it was determined that the largest destruction of exergy within the system occurs inside the fuel cell stack. Other important sources of exergy destruction include irreversibilities within the hydrogen ejector and the air compressor, and the exergy emission associated with the heat rejected from the radiator. To increase the accuracy of the model and extend the results, a more comprehensive model for the fuel cell stack should be developed, and an investigation should be performed into the effects of varying the operating parameters of the system. The results may aid efforts to optimize fuel cell systems.

This content is only available via PDF.
You do not currently have access to this content.