Abstract

We examine and benchmark the emerging idea of applying the large-eddy simulation (LES) formalism to unconventionally coarse grids where RANS would be considered more appropriate at first glance. We distinguish this idea from very-large-eddy-simulation (VLES) and detached-eddy-simulation (DES), which require switching between RANS and LES formalism. LES on RANS grid is appealing because first, it requires minimal changes to a production code; second, it is more cost-effective than LES; third, it converges to LES; and most importantly, it accurately predicts flows with separation. This work quantifies the benefit of LES on RANS-like grids as compared to RANS on the same grids. Three canonical cases are considered: periodic hill, backward-facing step, and jet in cross flow. We conduct direct numerical simulation (DNS), proper LES on LES grids, LES on RANS-quality grids, and RANS. We show that while the LES solutions on the RANS-quality grids are not grid converged, they are twice as accurate as the RANS on the same grids.

This content is only available via PDF.
You do not currently have access to this content.