Abstract

Turning maneuvers of rail vehicles involve demanding situations for the infrastructure because of the steering forces generated and the resultant lateral load transfers. Such forcing situation involves increased tangential forces that consume kinetic energy from the vehicle. While much attention has been paid in the literature to the damage in such infrastructure segments, the energy that is dissipated in these maneuvers, has not been explicitly addressed. In this paper, a specialized scale-down infrastructure is used to characterize the effect of the initial speed of the vehicle and its mass, on the magnitude of both the rail forces developed and the amount of dissipated energy during turning maneuvers. The outputs of the experiments suggest that most of the original kinetic energy is dissipated at the first portion of the turn. Also, that the magnitude of the wheel forces and the amount of dissipated energy, correlate. That is, a greater rail damage would correspond to greater energy dissipation.

This content is only available via PDF.
You do not currently have access to this content.