Abstract
The extraction of Nano-sized fillers from bio sources has been a key focus of the material industry to secure green composites for a wide range of applications. Consequently, chemical fragmentation and downsizing of waste lignocellulosic fibers into small size particles is a viable economic and environmental option. The objective of this work is to explore the potential use of Nano natural fillers as a reinforcement element in thermoplastic polymers. In specific, the Nano-sized lignocellulosic filler is extracted from date palm microfibers using the mechanical ball milling technique. The ball milling is performed at a high speed of 12 cycles per minute for four different time durations. The achieved nanoparticle size ranged from 80 to 122 nm, reduced to a range of 70 to 51 nm and then reached 27 to 39 nm after 3, 4 and 5 hours of powdering, respectively, with no significant change in size after 6 hours of milling. After that, the morphological properties of the produced fillers are characterized using various techniques such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Finally, the mechanical performance of the reinforced recycled polypropylene (rPP) using 10% (wt.) date palm nanofillers is investigated using tensile and flexural tests, as well as the physical properties including water absorption and density tests. Successful implementation of nanofillers in bio-composites offers an economical and sustainable route to attain high-performance material in the future.