Abstract

Assessing and improving the safety of social settings is pivotal for the reopening of facilities and institutions during the pandemic. Recent discoveries now suggest that the predominant medium of SARS-CoV-2 transmission is exposure to infectious respiratory aerosols. Airborne viral spread is particularly effective in indoor environments — which have been strongly implicated in high transmission rates and super-spreading events. This study focuses on computational fluid dynamics models developed to study the specific ventilation features of an indoor space and their effects on indoor particle spread. A case study is conducted on a typical classroom at the Cooper Union. Masked occupants are modeled in the room as aerosol sources to compare the performance of different ventilation settings on the exhaust rates of airborne particles. Simulation results reveal that increasing ventilation rates accelerate particle evacuation. Visualization and segregated data comparisons indicate regions of particle accumulation induced by the design and geometry of the classroom in relation to its occupants. Visualization is also used to observe a uniform distribution of airborne particles after only 10 minutes of simulated time — confirming the need for safety measures beyond the six feet distancing guideline.

This content is only available via PDF.
You do not currently have access to this content.