The SCARA robot has been extensively used for industrial applications. The motivation behind this research is to propose a SCARA variant as an alternative, with the popularity and applications of a SCARA robot. The main objective is to relocate the vertical prismatic joint and study the computational dynamics of the SCARA variant and the performances. The SCARA variant has been analyzed for the forward and inverse kinematics based on the transformation matrix method.

The dynamic model for the SCARA variant has been developed by using the Lagrangian method. The dynamic model is compared to the standard SCARA, it has been found that the dynamic models are very similar apart from the mass inertia and Coriolis matrices having terms in columns 2 & 3 exchanged. In this paper, linear and nonlinear trajectories, such as straight line, ellipse, and circular trajectories have been selected in the simulation study. Consistent results for torque requirements have been observed with the linear trajectory having the least values, followed by ellipse, and the circular trajectory.

This content is only available via PDF.
You do not currently have access to this content.