Abstract

Palladium hydride (Pd-H) is a metallic palladium that can absorb substantial amount of H at room temperature. Because this H absorption is recoverable, it can be utilized in a variety of energy applications. When Pd is alloyed with silver (Ag), sulfur poisoning remains a problem, but adding Ag improves Pd mechanical properties, boosts hydrogen permeability and solubility, and narrows the Pd-H system miscibility gap region. Pd alloyed with copper (Cu) has a lower H permeability and solubility compared to pure Pd and Pd-Ag alloys, but adding Cu gives better sulfur and carbon monoxide poisoning resistance and hydrogen embrittlement resistance, as well as better mechanical properties and a wider operating temperature range than pure Pd. These findings show that alloying Pd with a mix of Ag and Cu to make Pd-Ag-Cu ternary alloys improves Pd’s overall performance while also lowering its cost. Thus, in this paper, we provide the first embedded atom method potentials (EAM) for the quaternary hydrides Pd1-y-zAgyCuzHx. The EAM potentials can capture the preferred H occupancy locations, and determine the trends for the cohesive energies, lattice constants and elastic constants during MD simulations. The potentials also captured the existence of a miscibility gap for the Pd1-y-zAgyCuzHx and predicted it to narrow and disappear when Ag and Cu concentration increases, as was predicted by the experimental findings.

This content is only available via PDF.
You do not currently have access to this content.