Abstract
Palladium hydride (Pd-H) is a metallic palladium that can absorb substantial amount of H at room temperature. Because this H absorption is recoverable, it can be utilized in a variety of energy applications. When Pd is alloyed with silver (Ag), sulfur poisoning remains a problem, but adding Ag improves Pd mechanical properties, boosts hydrogen permeability and solubility, and narrows the Pd-H system miscibility gap region. Pd alloyed with copper (Cu) has a lower H permeability and solubility compared to pure Pd and Pd-Ag alloys, but adding Cu gives better sulfur and carbon monoxide poisoning resistance and hydrogen embrittlement resistance, as well as better mechanical properties and a wider operating temperature range than pure Pd. These findings show that alloying Pd with a mix of Ag and Cu to make Pd-Ag-Cu ternary alloys improves Pd’s overall performance while also lowering its cost. Thus, in this paper, we provide the first embedded atom method potentials (EAM) for the quaternary hydrides Pd1-y-zAgyCuzHx. The EAM potentials can capture the preferred H occupancy locations, and determine the trends for the cohesive energies, lattice constants and elastic constants during MD simulations. The potentials also captured the existence of a miscibility gap for the Pd1-y-zAgyCuzHx and predicted it to narrow and disappear when Ag and Cu concentration increases, as was predicted by the experimental findings.