Abstract
During the grinding of advanced materials, several problems such as the generation of high temperatures, more energy consumption, excessive utilization of cutting fluids, and emissions of various harmful gases have been encountered, resulting in negative impacts on the environment. In order to mitigate such problems, this study focuses on the sustainability of the grinding process amalgamated with the introduction of ultrasonic vibration. The effect of ultrasonic vibration has been incorporated in grinding along with optimal machining parameters. Ionic Liquid (ILs) with vegetable oil has been used as a cutting fluid, which is categorized as a green solvent. Ionic Liquids (ILs) have been proved as a favourable sustainable alternative additive in the base oil to obtain the desired cutting fluid performance. A comparative study has been conducted for various grinding strategies to assess their environmental impacts using Life Cycle Assessment (LCA). Initially, Conventional Grinding (CG) and Ultrasonic Assisted Grinding (UAG) have been attempted. In the subsequent attempt, ultrasonically atomized fluid has been used for the CG and UAG processes. The SimaPro LCA software has been used to quantify the environmental impacts associated with these processes. The inputs for the LCA inventory are consisted of material consumption, energy consumption, and cutting fluid consumption. In this study, the ReCiPe 2016 V 1.04 midpoint and endpoint module has been used for carrying out the impact assessment. The results of the LCA impact assessment showed that the ultrasonic-assisted grinding performed using ultrasonically atomized cutting fluid exhibited the least adverse effects on the environment as compared to other mentioned counterparts. The cutting fluid and power consumption has been found significant contributor for the environment. The results obtained from LCA analysis can be utilized as a basis for sustainability assessment framework in the grinding of advanced materials.