Engineering analysis of complex structures or mechanical systems typically involves contact with multiple components, large deformation, and material nonlinearity, which requires the application of nonlinear finite element methods. Despite the advancement of commercial software for finite element analysis (FEA), nonlinear FEA of a multi-component mechanical assembly will take hours to days, and even weeks to complete. It is highly desired to develop a reduced-order model for a family of complex structures that can reduce an original problems’ complexity and degree of freedom but has a reasonably small discrepancy with the full model and significantly reduces the computation time.

The typical approach to construct a reduced model includes 1) the response surface method via numerical design of experiments and, 2) the simplified physics approach. In this paper, it is proposed to develop a reduced model through the combination of simplified physics, dimensional analysis [1], and numerical design of experiments. The approach is applied to the construction of a reduced model for the analysis of a downhole plug [2]. The developed reduced model is verified by full-scale FEA models and validated through physical tests. The reduced model is implemented in a spreadsheet and takes only seconds to complete a calculation in contrast to hours using a full FEA model, enabling engineers’ quick evaluation of the corresponding designs.

This content is only available via PDF.
You do not currently have access to this content.