Abstract

In thermal spray applications, such as cold spray, an inert gas jet (typically helium or nitrogen) is used to accelerate micron scale particles to supersonic velocities. The complex gas dynamics of these supersonic jets are critical to understand via computational methods for the control of the spray. This work compares supersonic jet waveforms visualized by schlieren imaging with those predicted by computational fluid dynamics (CFD) simulations. A supersonic nitrogen jet is produced by a millimeter scale converging-diverging nozzle with inlet pressures as high as 50 bars. The jet Reynolds numbers based on the nozzle exit diameter and stagnation gas properties range between 60,000 to 325,000. A schlieren visualization setup has been built which shows the first spatial derivative of densities within the flow field. The strong density gradients across the oblique shock waves in the jets allow for clear photographs of the flow pattern of the jets using this schlieren visualization setup. Comparisons between the experiments and the CFD results act as a validation technique for the accuracy of the simulations in terms of the positions and orientations of the oblique shock waves. Through this study, the nozzle internal surface roughness is determined to be a critical parameter in millimeter scale nozzles for the development of the boundary layer. The CFD surface roughness parameters inside the nozzle are incremented until the geometry of the oblique shock waves matches the schlieren images. This work validates the simulation techniques which will be used for future jet simulations, in which shock wave locations and orientations are important, such as jet impingement on a flat plate and particle-shock interactions.

This content is only available via PDF.
You do not currently have access to this content.