In this study, we investigated the freezing point depression of liquids in nanostructures using a new thermomechanical method. First, we experimentally determined the freezing points of water, cyclohexane, and a certain organic material (Chem.A) in nanoscale structures using DSC measurements. Thereafter, we formulated a new equation by improving the Gibbs–Thomson equation, which is the conventional formula for representing the freezing point depression of a liquid in nanostructures. We introduced a new term in this new equation to represent the increase in the kinetic energy of the liquid molecule as a result of collision between the liquid molecules and nanostructure walls. Subsequently, we evaluated the solid–liquid interface free energy of sublimation materials by fitting the theoretical freezing point derived from the new equation to experimental data. In this study, we succeeded in reproducing the experimental data of freezing point depression using the proposed equation. In particular, the freezing points of cyclohexane and Chem.A in the nanostructure were better fitted by this new equation at 10 nm or more compared with the conventional equation. Our results show that the interaction between the wall of the nanostructure and liquid molecules affects freezing point depression.

This content is only available via PDF.
You do not currently have access to this content.