Abstract

Sustainable energy utilization on Mars is fundamental for the success of habitation on Mars. The two sustainable energy sources for In-Situ Resource Utilization (ISRU) with the highest potential for implementation on Mars are solar and wind. Unfortunately, the former cannot provide a reliable continuous source of energy for multiple reasons. Accordingly, wind energy is presented as a viable solution, or as a strong potential complement to solar energy.

The authors investigate different sites on Mars by evaluating the available wind resources to select the most feasible location in terms of energy yield and other critical habitability criteria. This work is conducted by applying the General Circulation Model (GCM) simulation, this particular analysis of wind harvesting feasibility on Mars will be studied by employing the Mars Climate Database (MCD) model.

In addition, this novel research provides a systematic approach for future energy harvesting projects on Mars. Moreover, it evaluates different potential wind turbine design concepts applicable for the Martian ISRU. The results of this research lay the foundation for future energy utilization necessary for habitation to thrive, as well as it will be a key for future exploration missions. Ultimately, this will enrich our understanding of wind turbine systems.

This content is only available via PDF.
You do not currently have access to this content.