The ballistic free-fall absolute gravimeters are most commonly-used instruments for high-precision absolute gravity measurements in many fields, such as scientific research, resource survey, geophysics and so on. The instrumental recoil vibrations generated by the release of the test mass can cause troublesome systematic bias, because these vibrations are highly reproducible from drop to drop with coherent phase. A compound counterbalanced design of chamber using both belt-driven mechanism and cam-driven structure is proposed in this paper. This structure is designed to achieve excellent recoil compensation as well as long freefall length for high precision measurements. Simulation results show that the recoil vibration amplitude of the compound recoil-compensated structure during the drop is about 1/4 of that with only belt-driven counterbalanced structure. This confirms the feasibility and superiority of the new design. And it is believed that the absolute gravimeter based on this newly proposed chamber design is expected to obtain more precise gravity measurement results in the future.

This content is only available via PDF.
You do not currently have access to this content.