Systems of Systems (SoS) combine complex systems such as financial, transportation, energy, and healthcare systems to provide greater functionality. A failure in a constituent system, however, can render the entire SoS ineffective by causing cascading faults. One method to prevent constituent faults from compromising SoS performance is to increase the SoS’s “resilience,” a measure of the SoS’s ability to cope with these faults and efficiently recover. Attempts to engineer improved resilience require a metric to measure resilience across different SoS architectures (network arrangements). In a previous work, the System of System Resilience Metric (SoSRM) was presented as a possible solution, but this new metric requires additional testing. This work examines the key question: “How can natural ecosystem characteristics be used to validate the SoSRM metric?” We hypothesize that the analysis of a test bed of generic ecosystems will produce SoSRM values that will positively correlate with a triangular trophic structure (wide base), validating SoSRM as a useful design metric. First principles for test bed creation are presented including biodiversity, trophic structure, and the role of detritus. SoSRM is measured for 31 case studies in a trophic structure test bed. Ecosystem network structure is quantified with graph theory. SoSRM correlates as expected with ecosystem network structure (r2 = .5016, n = 31), thus providing a validation of SoSRM as a design tool. As a final check, tests are conducted to ensure SoSRM is independent of trivial network characteristics (i.e. the number of nodes or links). By validating SoSRM, we provide a foundation for future work that focuses on increasing SoS resilience with biologically inspired design heuristics.

This content is only available via PDF.
You do not currently have access to this content.