Abstract

In an effort to identify cyber-attacks on infill structures, detection systems based on supervised learning have been attempted in Additive Manufacturing (AM) security investigations. However, supervised learning requires a myriad of training data sets to achieve acceptable detection accuracy. Besides, since it is impossible to train for unprecedented defective types, the detection systems cannot guarantee robustness against unforeseen attacks.

To overcome such disadvantages of supervised learning, This paper presents infill defective detection system (IDDS) augmented by semi-supervised learning. Semi-supervised learning allows classifying a sheer volume of unlabeled data sets by training a comparably small number of labeled data sets. Additionally, IDDS exploits self-training to increase the robustness against various defective types that are not pre-trained.

IDDS consists of the feature extraction, pre-training, self-training. To validate the usefulness of IDDS, five defective types were designed and tested with IDDS, which was trained by only normal labeled data sets. The results are compared with the basis accuracy from the perceptron network model with supervised learning.

This content is only available via PDF.
You do not currently have access to this content.