Abstract

Direct Metal Laser Sintering (DMLS) is a relatively new manufacturing process in additive manufacturing (AM) that fuses powdered metal by using a high-powered laser. Although this process allows manufacturing prototypes without requiring specific tooling, it is challenging to use this process for manufacturing high volume production parts since complex shapes can take a significant amount of build time. Furthermore, manufactured parts also need some amount of post-processing to remove the support material that may be required due to the layer-by-layer build process. This study investigates three process parameters that could be optimized to substantially reduce production time. These three parameters are as follows: build layer thickness, laser scan speed, and laser hatch distance. In order to evaluate the influence of these parameters, manufactured parts made of AISI 316L Stainless Steel are tested for fatigue life and static strength. A three-point bending test is used as per ASTM E466. While none of the three parameters is seen to significantly influence ultimate tensile strength, results indicate that build layer thickness is a significant process parameter that directly affects fatigue life. Furthermore, the interaction between build layer thickness and laser scan speed is found to be statistically significant for high cycle fatigue. However, laser scan speed and laser hatch distance are seen to be statistically insignificant for fatigue life. The initial results of this study indicate that process parameters of DMLS need to be selected judiciously in order to minimize build time while maintaining structural integrity.

This content is only available via PDF.
You do not currently have access to this content.