Abstract
Friction surfacing is an advanced technique to create solid-state deposition of wide range of materials onto a similar or dissimilar material substrate. This paper describes the study of a novel method to deposit material onto a substrate by friction surfacing. In the friction surfacing technique, the heat is generated entirely by friction. This metallic deposition technique consists of a rotating consumable tool that rubs against the surface of the substrate, and due to the frictional heat and forging generated between the tool and substrate, material is deposited onto the substrate. The material transferred from the consumable tool to the substrate occurs from the side of the tool, while in the conventional friction surfacing method, the material transfer happens from the end of the tool. In this investigation, the single and double-pass deposition of A6063 aluminum alloy onto an A36 carbon steel substrate was successfully carried out. To study the influence of the process parameters on the friction depositions, the substrate was divided into three sections, while the applying forces were varied in each section. Process parameters such as tool rotational speeds, table traverse speeds and normal force were experimented. A customized JET JMD-18 milling machine was used to carry out the experiments. The influence of process parameters on the material deposition was characterized by means of roughness tester and optical microscope. The results of the study reveal that this novel method is capable to create an ultra-thin and smooth metallic deposition with excellent coverage. The material consumption during the single and double-pass deposition was evaluated, and the coating cross-section was assessed using the optical microscope.