Abstract

PolyJet printing technology allows building polymeric materials with complex multi-material structures in the resolution of tens of microns layer thickness providing high control over the entire 3-D part. On the other hand, thermally conductive polymer/CNF nanocomposite materials offer new opportunities for replacing metals in industry and applications that require heat dissipation to avoid degradation of materials prematurely. CNFs are one of the best promising filler types to enhance thermal conductance of polymers. However, experimental thermal conductivities of polymer/CNF nanocomposites are significantly low compared to the intrinsic thermal conductivity of CNFs. Present work focused on selectively addition CNF fillers to form a thermally conductive path which helps to control dispersion and alignment. PolyJet printing forms the material and the structure simultaneously which allows the control over the material distribution and morphology on entire 3-D parts while providing possibilities to manipulate the design and create a conductive path. In the present research, improvement of thermal conductivity of Polymer/CNF nanocomposites via PolyJet printing using voxel digital printing method was investigated. Samples were designed as VeroClear material, VeroClear with CNFs, VeroCyan material, VeroCyan with CNFs. DSC and TPS were used to perform the thermal characterization of the samples.

This content is only available via PDF.
You do not currently have access to this content.