Abstract
High performance coatings are needed for downhole drilling applications. The main challenge in developing such coatings is to impart desirable surface characteristics such as low friction, high wear and corrosion resistance, while retaining structural integrity and consistency. Most coatings do not sustain the conditions in harsh environments resulting in failure and safety hazards. In this research, we designed high temperature coatings with integration of components that display wear resistance. After synthesis, they exhibited promising lubrication performance. Specifically, a simple and low-cost method was developed that can process the coating consisting high-temperature ceramics such as BN, SiC. Hybridizing graphite and α-zirconium phosphate as friction modifiers ideal for use with metals, alloys and ceramics, this coating is durable in a wide range of temperatures. Experimental results showed that the friction coefficient obtained for our coating was 0.17 as against the 0.50 value obtained for steel on steel sliding contact. In this work, we detail about the composition, microstructure, and tribological evaluation of the coatings tailored for drilling applications.