The trend in miniaturization of power electronic components requires the development of new robust and passive cooling methods to meet increased heat flux demands. Conventional heat sinks encounter inherent shortcomings due to heat spreading resistance of the heat sink baseplate particularly in natural convection heat sinks used to cool small localized heat sources. Heat pipes embedded within the base of heat sinks can be used to improve spreading performance but are limited by the ability to conduct heat into and out of the heat pipes.

In the current study, a small, naturally aspirated two-phase thermosyphon heat sink was developed and characterized experimentally. The proposed architecture integrates all thermosyphon components into one compact device, where the evaporator, riser and the downcomer are incorporated at the heat sink base. The downcomer also serves as the condenser within the base of a vertical finned natural convection heat sink.

The side-heated evaporator consists of an array mini-channels configuration which can operate in either pool boiling or flow boiling configuration, which allows the thermosyphon heat sink to operate in either reflux mode or looped mode, respectively.

Experiments were carried out using HFE 7000 as the working fluid. The effect of the of input power on the thermal performance is examined for both modes for powers ranging from 10 to 80 W. Results demonstrate that this approach significantly reduces the spreading resistance resulting in a net improvement which can be traded-off for a decrease the overall size or weight of the heat sink.

This content is only available via PDF.
You do not currently have access to this content.