This paper presents the application of robotics for the disassembly of electric vehicle lithium-ion battery (LIB) packs for the purpose of recycling. Electric vehicle battery systems can be expensive and dangerous to disassemble, therefore making it cost inefficient to recycle them currently. Dangers associated with high voltage and thermal runaway make a robotic system suitable for this task, as the danger to technicians or workers is significantly reduced, and the cost to operate a robotic system would be potentially less expensive over the robots lifetime. The proposed method allows for the automated or semi-automated disassembly of electric vehicle LIB packs for the purpose of recycling. In order to understand the process, technicians were studied during the disassembly process, and the modes and operations were recorded. Various modes of interacting with the battery module were chosen and broken down into gripping and cutting operations. Operations involving cutting and gripping were chosen for experimentation, and custom end of arm tooling was designed for use in the disassembly process. Path planning was performed offline in both MATLAB/Simulink and ROBOGUIDE, and the simulation results were used to program the robot for experimental validation.

This content is only available via PDF.
You do not currently have access to this content.