There are three types of oil production energy operations, primary recovery, secondary recovery and enhanced oil recovery (EOR). EOR consider as the last period for production operations. Where the EOR classify into many types such as thermal injection, gas injection, microbial EOR and chemical flooding.

Chemical flooding classified into many types such as polymer, surfactant, alkaline and nanoparticles (NP). NP can be classified into many types such as Iron Oxide (Fe2O3), Aluminum Oxide (Al2O3) and Magnesium Oxide (MgO) etc. In this study NP Aluminum oxide (Al2O3) were used to enhance the oil recovery.

The main objective of this study is to use the Nanoparticles EOR (Al2O3) and know it is effect on increasing the extraction of oil from cores. The big motivation of using Al2O3 that it is easy to extract it from raw clay. However, the raw clay is available in Libya and using it will be more economic than using other method of chemical EOR.

Nanoparticles EOR Aluminum oxide (Al2O3) used as a spontaneous imbibition test for sandstone core samples after saturated by crude oil. A spontaneous imbibition test consisting of two scenarios of nanoparticle solution (Al2O3) with change temperature and compared with one scenario of distilled water. The spontaneous imbibition test was performed in this study at room temperature to oven temperature (30C°, 40C°, 50C°, 60C°, 70C°).

The results shown that the oil recovery increases with the increase of the concentration of nanoparticle (Al2O3) and increase the temperature. The higher oil recovery was 76.04% at NP (Al2O3) concentration 1%. Finally, oil swelling and adsorption (NP (Al2O3) with oil drops) have been noticed during the extraction of oil. Thus, the gravity force will be higher than the capillary force.

This content is only available via PDF.
You do not currently have access to this content.