Performance of ball bearing–rotor systems are highly dependent on and often limited by characteristics of ball bearings. Several studies are available in the literature, investigating varying compliance and subharmonic resonances of ball bearings. Most of the studies are carried out with rigid rotors to focus on modelling of the bearings. There exist few studies which take flexibility of rotors into account. Furthermore, even if the rotor flexibility is modelled, most of the time symmetrical rotors are considered. However, rotors are rarely symmetric in realistic applications due to different locations of bearings and different weights of rotor components (compressors, turbines etc.). In this study, an asymmetric, balanced, flexible rotor supported by ball bearings considering Hertzian contact and radial clearance is investigated. Rotor shaft is modelled with Nelson finite rotor elements using Timoshenko beam theory and disks are considered as rigid masses. Harmonic Balance Method (HBM) is used to obtain nonlinear algebraic equations in the frequency domain and Alternating Frequency Time (AFT) method is utilized to find Fourier coefficients of nonlinear bearing forces. In order to decrease the number of nonlinear equations to be solved, Receptance Method (RM) is applied. Resulting set of nonlinear algebraic equations is solved by using Newton’s method with arclength continuation. Several case studies are performed and effects of asymmetry on nonlinear periodic vibration response of rotors are studied.

This content is only available via PDF.
You do not currently have access to this content.