Abstract

This paper extends research into flexible robotics through a collaborative, interdisciplinary senior design project. This paper deploys the Moving Frame Method (MFM) to analyze the motion of a relatively high multi-link system, driven by internal servo engines. The MFM describes the dynamics of the system and enables the construction of a general algorithm for the equations of motion. Lie group theory and Cartan’s moving frames are the foundation of this new approach to engineering dynamics. This, together with a restriction on the variation of the angular velocity used in Hamilton’s principle, enables an effective way of extracting the equations of motion. The result is a dynamic 3D analytical model for the motion of a snake-like robotic system, that can take the physical sizes of the system and return the dynamic behavior. Furthermore, this project builds a snake-like robot driven by internal servo engines. The multi-linked robot will have a servo in each joint, enabling a three-dimensional movement. Finally, a test is performed to compare if the theory and the measurable real-time results match.

This content is only available via PDF.
You do not currently have access to this content.