Additive manufacturing (AM) technology is gaining enormous popularity in the manufacturing industries. The continuous improvements made in the AM processes features development of 3D metallic prototypes as well as fully functional end-use components. Direct Metal Laser Sintering (DMLS) is a pre-placed powder bed based technique, in which a thin layer of powder is place over the build tray and the areas need to be sintered are exposed to the laser. In the current work the microstructural and mechanical behavior of Inconel 718 parts produced by DMLS are investigated. As the DMLS produces parts in a layer by layer fashion, the orientation of parts with respect to the build direction is an important criterion. Microstructure and mechanical properties of the produce differs depending upon the orientation. This paper emphasize on the variation of grain sizes and grain orientations developed in the components built with different orientations. Another common issue with the additive manufacturing is the development of the residual stresses in the components arising due to the differential thermal gradients experienced during processing. The variation of the residual stress generated in the produced parts has also been characterized and modeled.

This content is only available via PDF.
You do not currently have access to this content.