In the United States, approximately 44 children under the age of five years old drown each year after gaining unauthorized access to above-ground pools via pool ladders. Approximately 704 additional children sustain submersion-related injuries after gaining unauthorized access to above-ground pools via pool ladders. In many cases, these events occurred during brief lapses of adult supervision. The societal cost associated with these deaths and injuries ranges from 134 to 342 million dollars per year. In addition to societal costs, there is also a significant loss in quality of life for near-drowning victims and their families.

Since the 1960’s, several medical studies have been published that discuss children under the age of five accessing above-ground pools and drowning. Several of these medical studies propose solutions to reduce the likelihood of drowning. Despite the proposed solutions in these studies, the rate of such drownings in above-ground pools has not decreased. However, the medical studies do not address how proper and safe engineering design of pool ladders can and should be used to prevent such occurrences.

This paper adds engineering science to these medical studies by including safety engineering principles that can be used to prevent young children from gaining unauthorized access to above-ground pools via pool ladders. Specifically, this paper addresses, hazard and risk assessment, passive safety systems that can be added to pool ladders to prevent drowning incidences, and the economic and technological feasibility of such passive safety systems. This paper shows that the benefits associated with the reduction in societal costs of drowning or near-drowning outweigh the cost of adding passive safety systems to pool ladders.

This content is only available via PDF.
You do not currently have access to this content.