In this study, the tribological behavior of the Trihexyl tetradecylphosphonium-bis(2,4,4-trimethylpentyl)phosphinate [THTDP][Phos] ionic liquid with and without single-wall carbon nanotubes (SWCNT) dispersion as a thin boundary layer was intended for investigation. However, the surface heat treatment process was not sufficient to form a thin film on the sample surfaces. Thus, in each test condition, the lubricating agents were used as external (liquid) lubricants. Specifically, [THTDP][Phos] and ([THTDP][Phos]+0.1 wt.% SWCNT) boundary film layers were applied on 6061-T6 aluminum alloy disk samples and tested under sliding contact with 1.5 mm diameter 420C stainless steel balls using a ball-on-flat linearly reciprocating tribometer. A commercially available Mobil Super 10W-40 engine oil (MS10W40) was also tested and used as this investigation’s datum. The tribological behavior of [THTDP][Phos] and ([THTDP][Phos]+SWCNT) boundary film layers was analyzed via wear volume calculations from optical microscopy measurements, as well as by observation of the transient coefficient of friction (COF) obtained through strain gauge measurements made directly from the reciprocating member of the tribometer. Results indicate the potential for reduction of wear volume and coefficient of friction in the IL lubricated steel-on-aluminum sliding contact through (SWCNT) dispersion in the ionic liquid. Wear results are based on measurements obtained using optical microscopy (OM). Results discussed display improved tribological performance for both [THTDP][Phos] and ([THTDP][Phos]+SWCNT) over baseline MS10W40 oil lubricant for both roughness values tested for the steel-on-aluminum contact. No measurable improvements were observed between [THTDP][Phos] and ([THTDP][Phos]+SWCNT) tests.

This content is only available via PDF.
You do not currently have access to this content.